Advertisement

Resolution for skeptical stable semantics

  • P. A. Bonatti
Regular Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1265)

Abstract

An extension of resolution for skeptical stable model semantics is introduced. Unlike previous approaches, our calculus often needs to consider only a strict subset of the program rules. Moreover, we characterize a large class of programs whose derivations may proceed in a thoroughly goal-directed way. Some inferences, which depend on non-ground negative goals, can be drawn without resorting to negation-as-failure; as a consequence, many goals which flounder in the standard setting, have a successful skeptical derivation. The paper contains a preliminary study of some interesting derivation strategies.

Keywords

Stable semantics Skeptical derivations Resolution Floundering Strategies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.R. Apt, R.W. Bol, J.W. Klop. On the safe termination of Prolog programs. In Levi and Martelli (eds.), Proc, 6th ICLP, 353–368, Mit Press, 1989.Google Scholar
  2. 2.
    C. Bell, A. Nerode, R. Ng, V.S. Subrahmanian. Implementing stable semantics by linear programming. In Proc. of LPNMR'93, pp.23–42, MIT Press, 1993.Google Scholar
  3. 3.
    P.A. Bonatti, N. Olivetti. A sequent calculus for skeptical default logic. In Proc.of TABLEAUX'97, LNAI, Springer Verlag, to appear (1997).Google Scholar
  4. 4.
    W. Chen, D.S. Warren. Tabled evaluation with delaying for general logic programs. JACM, 43(1):20–74, 1996.Google Scholar
  5. 5.
    W. Chen, D.S. Warren. Computation of stable models and its integration with logical query processing. IEEE TKDE, 8(5):742–757, 1996.Google Scholar
  6. 6.
    M. Gelfond, V. Lifschitz. The stable model semantics for logic programming. In Proc. of the 5th ICLP, pp.1070–1080, MIT Press, 1988.Google Scholar
  7. 7.
    G. Gottlob, S. Marcus, A. Nerode, G. Salzer, V.S. Subrahmanian. A non-ground realization of the stable and well-founded semantics. TCS, 166:221–262, 1996.Google Scholar
  8. 8.
    V. Lifschitz, H. Turner. Splitting a logic program. In Proc. ICLP'94, pp.23–37, MIT Press, 1994.Google Scholar
  9. 9.
    J.W. Lloyd. Foundations of Logic Programming, Springer-Verlag, 1984.Google Scholar
  10. 10.
    W. Marek, M. Truszczyński. Computing Intersection of Autoepistemic Expansions. In Proc. LPNMR'91, pp.37–52, MIT Press, 1991.Google Scholar
  11. 11.
    I.Niemela, P. Simons. Efficient implementation of the well-founded and stable model semantics. In Proc. of JICSLP 96, pp.289–303, MIT Press, 1996.Google Scholar
  12. 12.
    T. Schaub, M. Thielscher. Skeptical query answering in constrained default logic. In Proc. of the Conference on Formal and Applied Practical Reasoning (FAPR '96), 1996.Google Scholar
  13. 13.
    V.S. Subrahmanian, D. Nau, C. Vago. WFS+Branch and bound=Stable models. IEEE TKDE, 7(3):362–377, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • P. A. Bonatti
    • 1
  1. 1.Dip. di InformaticaUniversità di TorinoTorinoItaly

Personalised recommendations