Greedily approximating the r-independent set and k-center problems on random instances

Extended abstract
  • Bernd Kreuter
  • Till Nierhoff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1269)


In this paper we analyse the performance of the greedy algorithm for r-independent set on random graphs. We show that for almost all instances
  • The greedy algorithm has a performance ratio of 2+o(1).

  • The greedy algorithm yields a 1+o(1) approximation of the r-dominating set problem.

  • The k-center problem can be solved optimally.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Alon, J. H. Spencer, and P. Erdós. The Probabilistic Method. Wiley, 1992.Google Scholar
  2. 2.
    B. Bollobás. Random Graphs. Academic Press, 1985.Google Scholar
  3. 3.
    Y. D. Burtin. On extreme metric parameters of a random graph: I. asymptotic estimates. Theory of Probability and its Applications, 19(4):710–725, 1974.Google Scholar
  4. 4.
    Y. D. Burtin. On extreme metric characteristics of a random graph: II. limit distributions. Theory of Probability and its Applications, 20(1):83–101, 1975.Google Scholar
  5. 5.
    G. J. Chang and G. L. Nemhauser. The k-domination and k-stability problems on sun-free chordal graphs. SIAM Journal on Algebraic Discrete Methods, 5(3):332–345, 1984.Google Scholar
  6. 6.
    A. Frieze and C. McDiarmid. Algorithmic theory of random graphs. Random Structures & Algorithms, 10:5–42, 1997.Google Scholar
  7. 7.
    A. M. Frieze. On the independence number of random graphs. Discrete Mathematics, 81:171–175, 1990.Google Scholar
  8. 8.
    G. R. Grimmett and C. McDiarmid. On colouring random graphs. Proceedings of the Cambridge Philosophical Society, 77:313–324, 1975.Google Scholar
  9. 9.
    S. T. Hedetniemi and R. C. Laskar. Bibliography on domination in graphs and some basic definitions of domination parameters. Discrete Mathematics, 86:257–277, 1990.Google Scholar
  10. 10.
    D. S. Hochbaum. Easy solutions for the k-center problem or the dominating set problem on random graphs. Annals of Discrete Mathematics, 25:189–210, 1985.Google Scholar
  11. 11.
    C. McDiarmid. Colouring random graphs. Annals of Operations Research, 1:183–200, 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Bernd Kreuter
    • 1
  • Till Nierhoff
    • 1
  1. 1.Institut für InformatikHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations