Advertisement

On the work of Andrzej Ehrenfeucht in model theory

  • Robert Vaught
Model Theory
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1261)

Abstract

This is a paper about a certain period of the develpoment of model theory upon which the work of A. Ehrenfeucht made an indelible mark. We will pay a special attention to his results about the theories of (Ord,<), (Ord,<,+), and (Ord,<,+,·). Also some of the history of the applications of Ramsey's theorem in model theory will be discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1957a]
    A. Ehrenfeucht, Application of games to some problems of mathematical logic. Bull. Acad. Polon. Sci., Sér. Sci Math. Astronom. Phys. 5 (1957), 35–37.Google Scholar
  2. [1957b]
    A. Ehrenfeucht, On theories categorical in power. Fund. Math. 44 (1957), 241–248.Google Scholar
  3. [1957c]
    A. Ehrenfeucht, Two theories with axioms built by means of pleonasms. J. Symb. Logic 22 (1957), 36–38.Google Scholar
  4. [1958]
    A. Ehrenfeucht, Theories having at least continuum many non-isomorphic models in each infinite power. Amer. Math. Soc. Notices 5 (1958), 680–681.Google Scholar
  5. [1959a]
    A. Ehrenfeucht, Decidability at the theory of one function. Amer. Math. Soc. Notices 6 (1959), p. 268.Google Scholar
  6. [1959b]
    A. Ehrenfeucht, Decidability of the theory of linear ordering relation. Amer. Math. Soc. Notices. 6 (1959), 268–269.Google Scholar
  7. [1959c]
    A. Ehrenfeucht, A decidable theory which has exactly one decidable complete extension. Amer. Math. Soc. Notices 6 (1959), p. 269.Google Scholar
  8. [1961a]
    A. Ehrenfeucht, An application of games to the completeness problem for formalized theories. Fund. Math. 49 (1961), 129–141.Google Scholar
  9. [1961b]
    A. Ehrenfeucht, Separable theories. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 9 (1961), 17–19.Google Scholar
  10. [1965]
    A. Ehrenfeucht, Elementary theories with models without automorphisms. The Theory of Models, Proceedings of the 1963 International Symposium at Berkeley, (North-Holland, Amsterdam, 1965), 70–76.Google Scholar
  11. [1972]
    A. Ehrenfeucht, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 20 (1972), 425–427.Google Scholar
  12. [1973]
    A. Ehrenfeucht, Discernible elements in models for Peano arithmetic. J. Symb. Logic 38 (1973), 291–292. There are continuum many ω0-categorical theories.Google Scholar
  13. [1971a]
    A. Ehrenfeucht and G. Fuhrken, A finitely axiomatizable complete theory with atomless F 1(T). Arch. Math. Logik und Grundlagenforsch. 14 (1971), 325–328.Google Scholar
  14. [1971b]
    A. Ehrenfeucht and G. Fuhrken, On models with undefinable elements. Math. Scand. 28 (1971), 325–328.Google Scholar
  15. [1966]
    A. Ehrenfeucht and G. Kreisel, Strong models of arithmetic. Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys. 14 (1966), 107–110.Google Scholar
  16. [1962]
    A. Ehrenfeucht and H. Läuchli, Rigid theories. J. Symb. Logic 27 (1962), 475–476.Google Scholar
  17. [1954]
    A. Ehrenfeucht and H. Läuchli, Sur les produits cartesiens des groups cycliques infinis. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 2 (1954), 261–263.Google Scholar
  18. [1956]
    A. Ehrenfeucht and A. Mostowski, Models of axiomatic theories admitting automorphisms. Fund. Math. 43 (1956), 50–68.Google Scholar
  19. [1961]
    A. Ehrenfeucht and A. Mostowski, A compact space of models of first order theories. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 9 (1961), 369–373.Google Scholar

Other References

  1. Büchi.
    Büchi, J. Richard. Transfinite automata recursions and weak second order theory of ordinals. Proceedings of the 1964 International Congress of Logic, Methodology, and Philosophy of Science held in Hebrew University, Jerusalem, (North-Holland, Amsterdam, 1965), 3–23.Google Scholar
  2. Chang & Keisler.
    Chang, C. C. and H. J. Keisler. Model Theory, (North-Holland, Amsterdam, 1973), xii+550 pp.Google Scholar
  3. Doner.
    Doner, John E. An Extended Arithmetic of Ordinal Numbers and its Metamathematics. Doctoral Dissertation, University of California, Berkeley, 1969, vi+312 (Also published by System Development Corporation.)Google Scholar
  4. Doner & Tarski.
    Doner, John E. and Alfred Tarski. An extended arithmetic of ordinal numbers. Fund. Math. 65 (1969), 95–127.Google Scholar
  5. Erdös & Rado.
    Erdös, P. and T. Rado. A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427–489.Google Scholar
  6. Feferman.
    Feferman, Solomon. Some recent work of Fraisse and Ehrenfeucht. Summaries of Talks Presented at the Summer Institute for Symbolic Logic Cornell University 1957, Second Edition, Communications Research Division, Institute for Defense Analyses, 1960, 201–209.Google Scholar
  7. Fraïssé.
    Fraïssé, Roland. Sur les rapports entre la théorie des relations et le sémantique au sens A. Tarski. Communication au Colloque de logique mathématique, Paris, 1952, 1 p.Google Scholar
  8. Fraïssé.
    Fraïssé, Roland. Sur quelques classifications des systèmes de relations. Publ. Sci. Univ. Alger Ser. A, 1 (1954), 35–182.Google Scholar
  9. Fraïssé1.
    Fraïssé, Roland. Sur quelques classification des systèmes de relations. Thèses présentees a las Faculté des Sciences de l'Université de Paris, Imprimerie Durand, Chartres, 1955, 1–154.Google Scholar
  10. Fraïssé2.
    Fraïssé, Roland. Sur quelques classifications des relations, basees sur des isomorphismes restreints. I. Étude generale. II. Application aux relations d'ordres. Alger-Mathematiques 2 (1955), 16–60, 273–295.Google Scholar
  11. Laüchli & Leonard.
    Laüchli, H. and J. Leonard, On the elementary theory of linear order, Fund. Math. 59 (1966), 109–116.Google Scholar
  12. LeTourneau.
    LeTourneau, John Joseph. Decision Problems Related to the Concept of Operation, Doctoral Dissertation, University of California, Berkeley, 1968, vi+122Google Scholar
  13. Morley.
    Morley, Michael. Categoricity in power. Trans. Amer. Math. Soc. 114, pp. 514–538 (1965).Google Scholar
  14. Morley.
    Morley, Michael. Omitting classes of elements, The Theory of Models, Proceedings of the 1963 International Symposium at Berkeley, (North-Holland, Amsterdam, 1965), 265–273.Google Scholar
  15. Mostowski & Tarski.
    Mostowski, Andrzej and Alfred Tarski. Arithmetical classes and types of well-ordered systems. Bull. Amer. Math. Soc. 55 (1949–50), p. 65.Google Scholar
  16. Rabin.
    Rabin, Michael O. Decidability of second-order theories and automata on infinite trees. Trans. Amer. Math. Soc. 141, 1–35 (1969).Google Scholar
  17. Ramsey.
    Ramsey, Frank P. On a problem of formal logic, Proc. London Math. Soc. 30 (1929), 264–286.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Robert Vaught
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeley

Personalised recommendations