Advertisement

Direct construction of compact directed acyclic word graphs

  • Maxime Crochemore
  • Renaud Vérin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1264)

Abstract

The Directed Acyclic Word Graph (DAWG) is an efficient data structure to treat and analyze repetitions in a text, especially in DNA genomic sequences. Here, we consider the Compact Directed Acyclic Word Graph of a word. We give the first direct algorithm to construct it. It runs in time linear in the length of the string on a fixed alphabet. Our implementation requires half the memory space used by DAWGs.

Keywords

pattern matching algorithm suffix automaton DAWG Compact DAWG suffix tree index on text 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Anderson and S. Nilsson. Efficient implementation of suffix trees. Software, Practice and Experience, 25(2):129–141, Feb. 1995.Google Scholar
  2. 2.
    A. Apostolico. The myriad virtues of subword trees. In A. Apostolico & Z. Galil, editor, Combinatorial Algorithms on Words., pages 85–95. Springer-Verlag, 1985.Google Scholar
  3. 3.
    A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M.T. Chen, and J. Seiferas. The smallest automaton recognizing the subwords of a text. Theoret. Comput. Sci., 40:31–55, 1985.Google Scholar
  4. 4.
    A. Blumer, J. Blumer, D. Haussler, and R. McConnell. Complete inverted files for efficient text retrieval and analysis. Journal of the Association for Computing Machinery, 34(3):578–595, July 1987.Google Scholar
  5. 5.
    A. Blumer, D. Haussler, and A. Ehrenfeucht. Average sizes of suffix trees and dawgs. Discrete Applied Mathematics, 24:37–45, 1989.Google Scholar
  6. 6.
    B. Clift, D. Haussler, R. McDonnell, T.D. Schneider, and G.D. Stormo. Sequence landscapes. Nucleic Acids Research, 4(1):141–158, 1986.Google Scholar
  7. 7.
    M. Crochemore. Transducers and repetitions. Theor. Comp. Sci., 45:63–86, 1986.Google Scholar
  8. 8.
    M. Crochemore and W. Rytter. Text Algorithms, chapter 5–6, pages 73–130. Oxford University Press, New York, 1994.Google Scholar
  9. 9.
    R. W. Irving. Suffix binary search trees. Technical report TR-1995-7, Computing Science Department, University of Glasgow, April 1995.Google Scholar
  10. 10.
    J. Karkkainen. Suffix cactus: a cross between suffix tree and suffix array. CPM, 937:191–204, July 1995.Google Scholar
  11. 11.
    C. Lefevre and J-E. Ikeda. The position end-set tree: A small automaton for word recognition in biological sequences. CABIOS, 9(3):343–348, 1993.Google Scholar
  12. 12.
    U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches. SIAM J. Comput., 22(5):935–948, Oct. 1993.Google Scholar
  13. 13.
    E. McCreight. A space-economical suffix tree construction algorithm. Journal of the ACM, 23(2):262–272, Apr. 1976.Google Scholar
  14. 14.
    E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249–260, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Maxime Crochemore
    • 1
  • Renaud Vérin
    • 1
  1. 1.Institut Gaspard MongeUniversité de Marne-La-ValléeNoisy-Le-Grand

Personalised recommendations