Advertisement

A type-free resource-aware λ-calculus

  • Luca Roversi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1258)

Abstract

We introduce and study a functional language λr, having two main features. λr has the same computational power of the λ-calculus. λr enjoys the resource-awareness of the typed/typable functional languages which encode the Intuitionistic Linear Logic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Abramsky. Domain theory in logical form. In Proceedings of Symposium on Logic in Computer Science LICS'87, 1987.Google Scholar
  2. 2.
    S. Abramsky. Computational interpretation of linear logic. Technical Report 90/92, Department of Computing, Imperial College, London, 1990.Google Scholar
  3. 3.
    H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the completeness of type assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.Google Scholar
  4. 4.
    H.P. Barendregt. The Lambda Calculus. North-Holland, second edition, 1984.Google Scholar
  5. 5.
    N. Benton, G. Bierman, V. de Paiva, and M. Hyland. Term assignment for intuitionistic linear logic. Technical Report 262, Computer Laboratory, University of Cambridge, August 1990.Google Scholar
  6. 6.
    P.N. Benton. A mixed linear and non-linear logic: Proofs, terms and models. In Proceedings of Computer Science Logic 1994 (CSL'94), Kazimierz, Poland, volume LNCS 993. Springer-Verlag, September 25–30 1995.Google Scholar
  7. 7.
    T. Braüner. The Girard translation extended with recursion. BRICS Report Series RS-95-13, BRICS, February 1995.Google Scholar
  8. 8.
    L. Egidi, F. Honsell, and S. Ronchi della Rocca. Operational, denotational and logical descriptions: a case study. FUNDAMENTA INFORMATICAE, 16(2):149–169, February 1992.Google Scholar
  9. 9.
    J. Gallier. On the correspondence between proofs and lambda terms. Obtained by ftp, January 1993.Google Scholar
  10. 10.
    J.-Y. Girard. Geometry of interaction 1: Interpretation of sytem F. In Logic Colloquium'88. North-Holland, 1989.Google Scholar
  11. 11.
    J.Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.Google Scholar
  12. 12.
    C.A. Gunter. Semantics of Programming Languages: Structures and Techniques. Foundations of Computing. The MIT Press, 1992.Google Scholar
  13. 13.
    W.A. Howard. To H.B. Curry: Essay on Combinatory Logic, Lambda Calculus and Formalisms, chapter The formulae-as-type notion of construction, pages 479–490. J.R. Hindley and J.P. Seldin editors, Academic press, 1980.Google Scholar
  14. 14.
    Y. Hyland. A syntactic characterization of the equality in some models of the lambda calculus. Journal of London Mathematical Society, 12(2):83–95, 1976.Google Scholar
  15. 15.
    G. Kahn. Natural semantics. In Proceedings of Symposium on Theoretical Aspects of Computer Science TACS'87, volume LNCS. Springer-Verlag, 1987.Google Scholar
  16. 16.
    Y. Lafont. The linear abstract machine. Theoretical Computer Science, 59:157–180, 1988.Google Scholar
  17. 17.
    P.J. Landin. The mechanical evaluation of expressions. Computer Journal, 6(4):308–320, 1964.Google Scholar
  18. 18.
    P. Lincoln and J. Mitchell. Operational aspects of linear lambda calculus. In Proceedings of Symposium on Logic in Computer Science LICS'92, pages 235–246, June 1992.Google Scholar
  19. 19.
    S. Martini and A. Masini. On the fine structure of the exponential rule. In L. Reigner J-Y. Girard, Y. Lafont, editor, Proceedings of the Cornell Linear Logic Workshop, 1993.Google Scholar
  20. 20.
    G. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science, 1:125–159, 1975.Google Scholar
  21. 21.
    G. Plotkin. Structured operational semantics. DAMI report series, Aarhus, 1981.Google Scholar
  22. 22.
    S. Ronchi della Rocca and L. Roversi. Lambda calculus and intuitionistic linear logic. To appear on STUDIA LOGICA, 199?Google Scholar
  23. 23.
    L. Roversi. Semantics of λ-calculi designed from Intuitionistic Linear Logic. PhD thesis, Università degli Studi di Pisa, 1995.Google Scholar
  24. 24.
    L. Roversi. Curry-Howard isomorphism and intuitionistic linear logic. Technical Report 19/96, Università degli Studi di Torino, 1996. Submitted to MSCS.Google Scholar
  25. 25.
    A.S. Troelstra. Natural deduction for intuitionistic linear logic. Annals of Pure and Applied Logic, 73:79–108.Google Scholar
  26. 26.
    P. Wadler. A syntax for linear logic. Presented at the Mathematical Foundations of Programming Semantics, New Orleans, April 1993.Google Scholar
  27. 27.
    C. P. Wadsworth. The relation between computational and denotational properties for Scott's D model of lambda calculus. SIAM Journal of Computing, 1(5):488–521, 1976.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Luca Roversi
    • 1
    • 2
  1. 1.Dipartimento di InformaticaUniversità degli studi di TorinoTorinoItaly
  2. 2.Department of Computer ScienceBrandeis UniversityWalthamUSA

Personalised recommendations