A scale-space approach to shape similarity

  • Peter Forte
  • Darrel Greenhill
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1252)


In this paper we develop a definition of “shape similarity” applied to contours and 2D shapes. The similarity is established within a particular scale-space whose characteristics are determined by the shapes themselves. The fundamental principle is that two contours or 2D shapes are similar at a given scale if they can give rise to identical area sampled images at the given scale with respect to a given sampling regime. The usefulness of the concept is that it can be used to build a formal theory of shape simplification, based on migration of the shape through the induced scale-space, to assist object recognition.


shape similarity scale-space multiscale object recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Koenderink. The structure of images. Biological Cybernetics, 50:363–370, 1984.Google Scholar
  2. 2.
    P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12:629–639, 1990.Google Scholar
  3. 3.
    B.B. Kimia, A.R. Tannenbaum, and S.W. Zucker. Shapes, shocks and deformations i: the components of two-dimensional shape and the reaction-diffusion space. International Journal of Computer Vision, 15:189–224, 1995.Google Scholar
  4. 4.
    A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, 1987.Google Scholar
  5. 5.
    B.M. ter Haar Romeny (ed.). Geometry-Driven Diffusion in Computer Vision. Kluwer Academic, 1994.Google Scholar
  6. 6.
    T Lindeberg. Scale-Space Theory in Computer Vision. Kluwer Academic, 1994.Google Scholar
  7. 7.
    A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations Concepts and Applications of Voronoi Diagrams. Wiley, 1992.Google Scholar
  8. 8.
    A.S. Glassner. Principles of Digital Image Synthesis, volume 1. Morgan Kaufmann, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Peter Forte
    • 1
  • Darrel Greenhill
    • 1
  1. 1.School of Computer Science and Electronic SystemsKingston UniversityKingston-upon-ThamesUK

Personalised recommendations