Abstract
Bisimulations that abstract from internal computation have proven to be useful for verification of compositionally defined transition system. In the literature of probabilistic extensions of such transition systems, similar bisimulations are rare. In this paper, we introduce weak bisimulation and branching bisimulation for transition systems where nondeterministic branching is replaced by probabilistic branching. In contrast to the nondeterministic case, both relations coincide. We give an algorithm to decide weak bisimulation with a time complexity cubic in the number of states of the transition system. This meets the worst case complexity for deciding branching bisimulation in the nondeterministic case.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
G. Adel'son-Velshii, Y. Landis: An Algorithm for the Organization of Information. Soviet. Math. Dokl. 3, pp 1259–1262, 1962.
A. Aziz, V. Singhal, F. Balarin, R. Brayton, A. Sangiovanni-Vincentelli: It usually works: The Temporal Logic of Stochastic Systems. Proc. CAV'95, LNCS 939, pp 155–165, 1995.
C. Baier: Polynomial Time Algorithms for Testing probabilistic Bisimulation and Simulation. Proc. CAV'96, LNCS 1102, pp 38–49, 1996.
C. Baier, H. Hermanns: Weak Bisimulation for Fully Probabilistic Processes. Techn. Bericht IMMD-VII/1-97, Universität Erlangen.
A. Bianco, L. de Alfaro: Model Checking of Probabilistic and Nondeterministic Systems. Proc. Foundations of Software Technology and Theoretical Computer Science, LNCS 1026, pp 499–513, 1995.
G. Chehaivbar, H. Garavel, N. Tawbi, F. Zulian: Specification and Verification of the Powerscale Bus Arbitration Protocol: An Industrial Experiment with LOTOS. Formal Description Techniques IX, Chapmann Hall, 1996.
I. Christoff: Testing Equivalences and Fully Abstract Models for Probabilistic Processes, Proc. CONCUR'90, LNCS 458, pp 126–140, 1990.
L. Christoff, I. Christoff: Efficient Algorithms for Verification of Equivalences for Probabilistic Processes. Proc. CAV'91, LNCS 575, pp 310–321, 1991.
R. Cleaveland, S. Smolka, A. Zwarico: Testing Preorders for Probabilistic Processes. Proc. ICALP'92, LNCS 623, pp 708–719, 1992.
D. Coppersmith, S. Winograd: Matrix Multiplication via Arithmetic Progressions. Proc. 19th ACM Symposium on Theory of Computing, pp 1–6, 1987.
C. Courcoubetis, M. Yannakakis: Verifying Temporal Properties of Finite-State Probabilistic Programs. Proc. FOCS'88, pp 338–345, 1988.
A. Giacalone, C. Jou, S. Smolka: Algebraic Reasoning for Probabilistic Concurrent Systems. Proc. IFIP TC2 Working Conf. on Programming Concepts and Methods, 1990.
R. van Glabbeek, S.A. Smolka, and B. Steffen: Reactive, generative, and stratified models of probabilistic processes. Information and Computation, Vol 121, pp 59–80, 1995.
R. van Glabbeek, W. Weijland: Branching Time and Abstraction in Bisimulation Semantics. Journal of the ACM 43(3), pp. 555–600, 1996.
J. Groote, F. Vaandrager: An Efficient Algorithm for Branching Bisimulation and Stuttering Equivalence. Proc. ICALP'90, LNCS 443, 1990.
P. Halmos: Measure Theory. Springer-Verlag, 1950.
H. Hansson: Time and Probability in Formal Design of Distributed Systems. Ph.D.Thesis, Uppsala University, 1994.
H. Hansson, B. Jonsson: A Calculus for Communicating Systems with Time and Probabilities. Proc. IEEE Real-Time Systems Symposium, 1990.
H. Hansson, B. Jonsson: A Logic for Reasoning about Time and Probability. Formal Aspects of Computing, Vol. 6, pp 512–535, 1994.
S. Hart, M. Sharir: Probabilistic Temporal Logic for Finite and Bounded Models. Proc. 16th ACM Symposium on Theory of Computing, 1984.
T. Huynh, L. Tian: On some Equivalence Relations for Probabilistic Processes. Fundamenta Informaticae, Vol. 17, pp 211–234, 1992.
B. Jonsson, K.G. Larsen: Specification and Refinement of Probabilistic Processes. Proc. LICS'91, pp 266–277,1991.
B. Jonsson, W. Yi: Compositional Testing Preorders for Probabilistic Processes. Proc, LICS'95, pp 431–443, 1995.
C.C. Jou, S. Smolka: Equivalences, Congruences and Complete Axiomatizations for Probabilistic Processes. Proc. CONCUR'90, LNCS 458, pp 367–383, 1990.
P. Kanellakis, S. Smolka: CCS Expressions, Finite State Processes, and Three Problems of Equivalence. Information and Computation, Vol. 86, pp 43–68, 1990.
K. Larsen, A. Skou: Bisimulation through Probabilistic Testing. Information and Computation, Vol. 94, pp 1–28, 1991.
K. Larsen, A. Skou: Compositional Verification of Probabilistic Processes. Proc. CONCUR'92, LNCS 630, pp 456–471, 1992.
R. Milner: Calculi for Synchrony and Asynchrony. Theoretical Computer Science, Vol. 25, pp 269–310, 1983.
R. Milner: Communication and Concurrency. Prentice Hall, 1989.
R. Paige, R. Tarjan: Three Partition Refinement Algorithms. SIAM Journal of Computing, Vol. 16, No. 6, pp 973–989, 1987.
A. Pnueli, L. Zuck: Verification of Multiprocess Probabilistic Protocols. Distributed Computing, Vol. 1, No. 1, pp 53–72, 1986.
A. Pnueli, L. Zuck: Probabilistic Verification. Information and Computation, Vol. 103, pp 1–29, 1993.
R. Segala, N. Lynch: Probabilistic Simulations for Probabilistic Processes. Proc. CONCUR 94, LNCS 836, pp 481–496, 1994.
M. Vardi: Automatic Verification of Probabilistic Concurrent Finite-State Programs. Proc. FOCS'85, pp 327–338, 1985.
M. Vardi, P. Wolper: An Automata-Theoretic Approach to Automatic Program Verification. Proc. LICS'86, pp 332–344, 1986.
S. Yuen, R. Cleaveland, Z. Dayar, S. Smolka: Fully Abstract Characterizations of Testing Preorders for Probabilistic Processes. Proc. CONCUR'94, LNCS 836, pp 497–512, 1994.
W. Yi, K. Larsen: Testing Probabilistic and Nondeterminsitic Processes. Protocol Specification, Testing and Verification XII, Elsevier Science Publishers, IFIP, pp 47–61, 1992.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baier, C., Hermanns, H. (1997). Weak bisimulation for fully probabilistic processes. In: Grumberg, O. (eds) Computer Aided Verification. CAV 1997. Lecture Notes in Computer Science, vol 1254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63166-6_14
Download citation
DOI: https://doi.org/10.1007/3-540-63166-6_14
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63166-8
Online ISBN: 978-3-540-69195-2
eBook Packages: Springer Book Archive