Advertisement

The equivalence problem for deterministic pushdown automata is decidable

  • Géraud Sénizergues
Session 17: Formal Languages III
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1256)

Abstract

The equivalence problem for deterministic pushdown automata is shown to be decidable. We exhibit a complete formal system for deducing equivalent pairs of deterministic rational series on the alphabet associated with a dpda M.

Keywords

deterministic pushdown automata rational series finite dimensional vector spaces matrix semigroups complete formal systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bee76]
    C. Beeri. An improvement on Valiant's decision procedure for equivalence of deterministic finite-turn pushdown automata. TCS 3, pages 305–320, 1976.Google Scholar
  2. [Cau95]
    D. Caucal. Bisimulation of context-free grammars and of pushdown automata. To appear in CSLI, Modal Logic and process algebra, vol. 53, Stanford, pages 1–20, 1995.Google Scholar
  3. [Cou83]
    B. Courcelle. An axiomatic approach to the Korenjac-Hopcroft algorithms. Math. Systems theory, pages 191–231, 1983.Google Scholar
  4. [Cou90]
    B. Courcelle. Recursive applicative program schemes. In Handbook of THeoretical Computer Science. edited by J. Van Leeuwen, pages 461–490. Elsevier, 1990.Google Scholar
  5. [GG66]
    S. Ginsburg and S. Greibaxch. Deterministic context-free languages. Information and Control, pages 620–648, 1966.Google Scholar
  6. [Har78]
    M.A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, Reading, Mass., 1978.Google Scholar
  7. [HHY79]
    M.A. Harrison, I.M. Havel, and A. Yehudai. On equivalence of grammars through transformation trees. TCS 9, pages 173–205, 1979.CrossRefGoogle Scholar
  8. [Lis96]
    L.P. Lisovik. Hard sets methods and semilinear reservoir method with applications. In Proceedings 23rd ICALP, pages 229–231. Springer, LNCS 1099, 1996.Google Scholar
  9. [Mei89]
    Y.V. Meitus. The equivalence problem for real-time strict deterministic pushdown automata. Kibernetika 5 (in russian, english translation in Cybernetics and Systems analysis), pages 14–25, 1989.Google Scholar
  10. [Mei92]
    Y.V. Meitus. Decidability of the equivalence problem for deterministic pushdown automata. Kibernetika 5 (in russian, english translation in Cybernetics and Systems analysis), pages 20–45, 1992.Google Scholar
  11. [Oya87]
    M. Oyamaguchi. The equivalence problem for real-time d.p.d.a's. J. assoc. Comput. Mach. 34, pages 731–760, 1987.Google Scholar
  12. [Rom85]
    V.Yu. Romanovskii. Equivalence problem for real-time deterministic pushdown automata. Kibernetika no 2, pages 13–23, 1985.Google Scholar
  13. [Sén94]
    G. Séniaergues. Formal languages and word-rewriting. In Term Rewriting, Advanced Course, pages 75–94. Springer, LNCS 909, edited by H. Comon and J.P.Jouannaud, 1994.Google Scholar
  14. [Sén97]
    G. Sénizergues. L(A)=L(B)? Technical report, LaBRI, Université Bordeaux I, report nr1161-97. can be accessed at URL, http://www.labri.u-bordeaux.fr/, 1997.Google Scholar
  15. [Sti96]
    C. Stirling. Decidability of bisimulation equivalence for normed pushdown processes. In Proceedings CONCUR 96, 1996.Google Scholar
  16. [Val74]
    L.G. Valiant. The equivalence problem for deterministic finite-turn pushdown automata. Information and Control 25, pages 123–133, 1974.CrossRefGoogle Scholar
  17. [VP75]
    L.G. Valiant and M.S. Paterson. Deterministic one-counter automata. Journal of Computer and System Sciences 10. pages 340–350, 1975.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  1. 1.LaBRI and UFR Math-infoUniversité BordeauxlTalence Cedex

Personalised recommendations