A complete characterization of the path layout construction problem for ATM networks with given hop count and load

Extended abstract
  • Tamar Eilam
  • Michele Flammini
  • Shmuel Zaks
Session 13: Routing Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1256)


We investigate the time complexity of deciding the existence of layouts of virtual paths in high-speed networks, that enable a connection from one vertex to all others and have maximum hop count h and maximum edge load l, for a stretch factor of one. We prove that the problem of determining the existence of such layouts is NP-complete for every given values of h and l, except for the cases h=2, l=1 and h=1, any l, for which we give polynomial-time layout constructions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Ahn, R. P. Tsang, S.R. Tong, and D.H.C. Du. Virtual path layout design on ATM networks. In INFOCOM'94, pages 192–200, 1994.Google Scholar
  2. 2.
    B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg. Compact distributed data structures for adaptive routing. In 21st Symp. on Theory of Computing, pages 479–489, 1989.Google Scholar
  3. 3.
    B. Awerbuch and D. Peleg. Routing with polynomial communication-space trade-off. SIAM Journal on Discrete Math, 5(2):151–162, May 1992.CrossRefGoogle Scholar
  4. 4.
    J. Burgin and D. Dorman. Broadband ISDN resource management: The role of virtual paths. IEEE Communicatons Magazine, 29, 1991.Google Scholar
  5. 5.
    I. Cidon, O. Gerstel, and S. Zaks. A scalable approach to routing in ATM networks. In G. Tel and P.M.B. Vitányi, editors, The 8th International Workshop on Distributed Algorithms (LNCS 857), pages 209–222, Terschelling, The Netherlands, October 1994. Submitted for publication in IEEE/ACM Trans. on Networking.Google Scholar
  6. 6.
    R. Cohen and A. Segall. Connection management and rerouting in ATM networks. In INFOCOM'94, pages 184–191, 1994.Google Scholar
  7. 7.
    E. A. Dinic. Algorithm for solution of a problem of maximum flow in a network with power estimation. Soviet Math. Dokl., Vol. 11, pages 1277–1280, 1970.Google Scholar
  8. 8.
    S. Even. Graph Algorithms. Computer Science Press, 1979.Google Scholar
  9. 9.
    L. R. Ford and D.R. Fulkerson. Flows in Networks. Princeton Univ. Press, Princeton, NJ, 1962.Google Scholar
  10. 10.
    M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., 1979.Google Scholar
  11. 11.
    O. Gerstel, A. Wool, and S. Zaks. Optimal layouts on a chain ATM network. 3rd Annual European Symposium on Algorithms (ESA), (LNCS 979), Corfu, Greece, September 1995, pages 508–522. To appear in Discrete Applied Mathematics.Google Scholar
  12. 12.
    O. Gerstel and S. Zaks. The virtual path layout problem in fast networks. In The 13th ACM Symp. on Principles of Distributed Computing, pages 235–243, Los Angeles, USA, August 1994.Google Scholar
  13. 13.
    R. Händler and M.N. Huber. Integrated Broadband Networks: an introduction to ATM-based networks. Addison-Wesley, 1991.Google Scholar
  14. 14.
    ITU recommendation. I series (B-ISDN), Blue Book, November 1990.Google Scholar
  15. 15.
    F.Y.S. Lin and K.T. Cheng. Virtual path assignment and virtual circuit routing in ATM networks. In GLOBCOM'93, pages 436–441, 1993.Google Scholar
  16. 16.
    C. Partridge. Gigabit Networking. Addison Wesley, 1994.Google Scholar
  17. 17.
    K.I. Sato, S. Ohta, and I. Tokizawa. Broad-band ATM network architecture based on virtual paths. IEEE Transactions on Communications, 38(8):1212–1222, August 1990.CrossRefGoogle Scholar
  18. 18.
    Y. Sato and K.I. Sato. Virtual path and link capacity design for ATM networks. IEEE Journal of Selected Areas in Communications, 9, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Tamar Eilam
    • 1
  • Michele Flammini
    • 2
    • 3
  • Shmuel Zaks
    • 1
  1. 1.Department of Computer ScienceTechnionHaifaIsrael
  2. 2.Dipartimento di Matematica Pura ed ApplicataUniversity of L'AquilaL'AquilaItaly
  3. 3.Project SLOOP I3S-CNRS URA/INRIAUniv.Nice-Sophia AntipolisSophia AntipolisFrance

Personalised recommendations