An abstract data type for real numbers

  • Pietro Di Gianantonio
Session 2: Computability
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1256)


We present a PCF-like calculus having real numbers as a basic data type. The calculus is defined by its denotational semantics. We prove the universality of the calculus (i.e. every computable element is definable). We address the general problem of providing an operational semantics to calculi for the real numbers. We present a possible solution based on a new representation for the real numbers.


real number computability domain theory denotational and operational semantics abstract data types 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BC90]
    H.-J. Boehm and R. Cartwright. Exact real arithmetic: formulating real numbers as functions. In David Turner, editor, Research topics in functional programming, pages 43–64. Addison-Wesley, 1990.Google Scholar
  2. [BCRO86]
    H.-J. Boehm, R. Cartwright, M. Riggle, and M.J. O'Donell. Exact real arithmetic: a case study in higher order programming. In ACM Symposium on lisp and functional programming, 1986.Google Scholar
  3. [DG93]
    P. Di Gianantonio. A functional approach to real number computation. PhD thesis, University of Pisa, 1993.Google Scholar
  4. [DG96]
    P. Di Gianantonio. Real number computability and domain theory. Information and Computation, 127(1):11–25, May 1996.CrossRefGoogle Scholar
  5. [EE96]
    A. Edalat and M. Escardo. Integration in real pcf. In IEEE Symposium on Logic in Computer Science, 1996.Google Scholar
  6. [Esc96]
    M. Escardo. Pcf extended with real numbers. Theoret. Comput. Sci, July 1996.Google Scholar
  7. [Lac59]
    D. Lacombe. Quelques procédés de définitions en topologie recursif. In Constructivity in mathematics, pages 129–158. North-Holland, 1959.Google Scholar
  8. [ML70]
    P. Martin-Lof. Note on Constructive Mathematics. Almqvist and Wiksell, Stockholm, 1970.Google Scholar
  9. [MM]
    V. Ménissier-Morain. Arbitrary precission real arithmetic: design and algorithms. Submitted to the Journal of Symbolic Computation. Available at Scholar
  10. [Plo77]
    G.D. Plotkin. Lcf considered as a programing language. Theoret. Comput. Sci., 5:223–255, 1977.CrossRefGoogle Scholar
  11. [Sco70]
    Dana Scott. Outline of the mathematical theory of computation. In Proc. 4th Princeton Conference on Information Science, 1970.Google Scholar
  12. [Str94]
    T. Streicher. A universality theorem for pcf with recursive types, parallel-or and ∃. Mathematical Structures for Computing Science, 4(1):111–115, 1994.Google Scholar
  13. [Vui88]
    J. Vuillemin. Exact real computer arithmetic with continued fraction. In Proc. A.C.M. conference on Lisp and functional Programming, pages 14–27, 1988.Google Scholar
  14. [Wei87]
    K. Weihrauch. Computability. Springer-Verlag, Berlin, Heidelberg, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Pietro Di Gianantonio
    • 1
  1. 1.Dipartimento di Matematica e InformaticaUniversità di UdineUdineItaly

Personalised recommendations