Advertisement

Some results on regular mappings

  • H. Tapia-Recillas
  • G. Vega
  • E. Daltabuit
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1255)

Abstract

Several results about regular mappings are presented in connection with the associated substitution S-box. A characterization of regular mappings is given and an upper bound for the -robustness of the S-box against differential cryptanalysis is provided.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beth, T., and Ding, C. On permutations against differential cryptanalysis. In Advances in Cryptology — EUROCRYPT'93, Springer-Verlag, New York (1993).Google Scholar
  2. 2.
    Biham, E., and Shamir, A. Differential Cryptanalysis of the Data Encryption Standard. Springer-Verlag, New York (1993).Google Scholar
  3. 3.
    Biham, E., and Shamir, A. Differential Cryptanalysis of DES-like cryptosystems. Journal of Cryptology Vol. 4, No. 1 (1993) 3–72.Google Scholar
  4. 4.
    Detombe, J. and Tavares, S. Constructing large cryptographically strong S-boxes. Advances in Cryptology — AUSCRYPT'92, Springer-Verlag, New York (1993).Google Scholar
  5. 5.
    Lidl, R., and Niederreiter, H. Finite Fiels, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, (1983).Google Scholar
  6. 6.
    Matsui, M. Linear cryptanalysis method for DES cipher. Abstracts of EUROCRYP-T'93, May (1993).Google Scholar
  7. 7.
    Seberry, J., Zhang, X. M., and Zheng, Y. Systematic generation of cryptographically robust S-boxes. In Proceedings of the firts ACM Conference on Computer and Communications Security, The Association for Computing Machinery, New York (1993) 172–182.Google Scholar
  8. 8.
    Seberry, J., Zhang, X. M., and Zheng, Y. Pitfalls in Designing Sustitution Boxes. Preprint (1994).Google Scholar
  9. 9.
    Seberry, J., Zhang, X. M., and Zheng, Y. Relationships among nonlinearity criteria. Submitted to EUROCRYPT'94, (1994).Google Scholar
  10. 10.
    Seberry, J., Zhang, X. M., and Zheng, Y. Remarks on S-boxes based on permutation polynomials. In Advances in Cryptology — Crypto'94 (1994).Google Scholar
  11. 11.
    Webster, A. F., and Tavares, S. E. On the designs of S-boxes. In Advances in Cryptology — Crypto'85, vol. 219, Lecture Notes in Computer Science, Springer-Verlag, New York, (1986) 523–534.Google Scholar
  12. 12.
    Zhang, X. M., and Zheng, Y. Relationships Between Differential and Other Cryptographic Characteristics of an S-box, Preprint, May (1996).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • H. Tapia-Recillas
    • 1
  • G. Vega
    • 2
  • E. Daltabuit
    • 2
  1. 1.Departamento de MatemáticasUniversidad Autönoma Metropolitana-IMexico D.F.Mexico
  2. 2.Direcciön General de Servicios de Cómputo AcadémicoUniversidad Nacional Autönoma de MéxicoMéxico D.F.Mexico

Personalised recommendations