Advertisement

Petri's axioms of concurrency a selection of recent results

  • Olaf Kummer
  • Mark -Oliver Stehr
Regular Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1248)

Abstract

Concurrency theory, as developed by Carl Adam Petri, is an axiomatic theory of binary relations of concurrency (co) and causality (li). This work deals with interactions between axioms and studies properties of concurrency structures, the models of this theory. In contrast to other treatments concurrency theory will be investigated in its general form, which does not require an underlying partial order of causality. Some difficulties are illustrated by counterexamples and possible extensions of the original set of axioms are proposed and analyzed.

Topics

Axiomatic theory of concurrency/causality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Best and C. Fernandez. Nonsequential Processes—A Petri Net View, volume 13 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1988.Google Scholar
  2. [2]
    E. Best and A. Merceron. Concurrency axioms and D-continuous posets. In G. Rozenberg, editor, Advances in Petri Nets 1984, volume 188 of Lecture Notes in Computer Science, pages 32–47. Springer-Verlag, 1985. Abridged version.Google Scholar
  3. [3]
    C. Fernandez and P. S. Thiagarajan. A note on D-continuous causal nets. In A. Pagnoni and G. Rozenberg, editors, Application and Theory of Petri Nets 1982, volume 66 of Informatik-Fachberichte, pages 86–97. Springer-Verlag, 1983.Google Scholar
  4. [4]
    C. Fernandez and P. S. Thiagarajan. D-continuous causal nets: A model of nonsequential processes. Theoretical Computer Science, 28:171–196, 1984.Google Scholar
  5. [5]
    O. Kummer. Axiomensysteme für die Theorie der Nebenläufigkeit. Logos Verlag, Berlin, 1996.Google Scholar
  6. [6]
    C. A. Petri. Nicht-sequentielle Prozesse. ISF-Bericht ISF-76-6, third edition, GMD, St. Augustin, 1977.Google Scholar
  7. [7]
    C. A. Petri. Concurrency as a basis of systems thinking. In F. V. Jensen, B. H. Mayoh, and K. K. Moller, editors, Proc. from 5th Scandinavian Logic Symposium, Jan. 1979, Aalborg, pages 143–162, Aalborg, 1979. Universitetsforlag.Google Scholar
  8. [8]
    C. A. Petri. Concurrency. In W. Brauer, editor, Net Theory and Applications—Proc. of the Advanced Course on General Net Theory of Processes and Systems, volume 84 of Lecture Notes in Computer Science, pages 251–260. Springer-Verlag, 1980.Google Scholar
  9. [9]
    C. A. Petri. State-transition structures in physics and in computation. International Journal of Theoretical Physics, 21(12):979–992, 1982.Google Scholar
  10. [10]
    C. A. Petri. Concurrency theory. In W. Brauer, W. Reisig, and G. Rozenberg, editors, Advances in Petri Nets 1986, volume 254 of Lecture Notes in Computer Science, pages 4–24. Springer-Verlag, 1987.Google Scholar
  11. [11]
    C. A. Petri. Concurrency Theory. Lecture notes, Universität Hamburg, Fachbereich Informatik, 1988.Google Scholar
  12. [12]
    C. A. Petri. Vollständige Signalordnung. Lecture notes, Universität Hamburg, Fachbereich Informatik, 1989.Google Scholar
  13. [13]
    C. A. Petri. Private communication, March 1994.Google Scholar
  14. [14]
    C. A. Petri. Nets, time and space. Theoretical Computer Science, 153(1–2):3–48, 1996.Google Scholar
  15. [15]
    C. A. Petri and E. Smith. Concurrency and continuity. In G. Rozenberg, editor, Advances in Petri Nets 1987, volume 266 of Lecture Notes in Computer Science, pages 273–292, Berlin, 1987. Springer-Verlag.Google Scholar
  16. [16]
    E. Smith. Zur Bedeutung der Concurrency-Theorie für den Aufbau hochverteilter Systeme., volume 180 of Berichte der GMD. GMD, St. Augustin, 1989.Google Scholar
  17. [17]
    M.-O. Stehr. Physically Motivated Axiomatic Concurrency Theory — A Posetless Approach. Studienarbeit, Universität Hamburg, Fachbereich Informatik, 1993.Google Scholar
  18. [18]
    M.-O. Stehr. Concurrency Theory of Cyclic and Acyclic Processes. Fachbereichsbericht FBI-HH-B-190/96, Universität Hamburg, Fachbereich Informatik, 1996. This report is a revised version of [17].Google Scholar
  19. [19]
    M.-O. Stehr. Zyklische Ordnungen — Axiome und einfache Eigenschaften. Diplomarbeit, Universität Hamburg, Fachbereich Informatik, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Olaf Kummer
    • 1
  • Mark -Oliver Stehr
    • 1
  1. 1.Fachbereich InformatikUniversität HamburgHamburg

Personalised recommendations