Advertisement

RALL: Machine-supported proofs for relation algebra

  • David von Oheimb
  • Thomas F. Gritzner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1249)

Abstract

We present a theorem proving system for abstract relation algebra called RALL (=Relation-Algebraic Language and Logic), based on the generic theorem prover Isabelle. On the one hand, the system is an advanced case study for Isabelle/HOL, and on the other hand, a quite mature proof assistant for research on the relational calculus. RALL is able to deal with the full language of heterogeneous relation algebra including higher-order operators and domain constructions, and checks the type-correctness of all formulas involved. It offers both an interactive proof facility, with special support for substitutions and estimations, and an experimental automatic prover. The automatic proof method exploits an isomorphism between relation-algebraic and predicate-logical formulas, relying on the classical universal-algebraic concepts of atom structures and complex algebras.

Keywords

Relation algebra Isabelle interactive and automatic theorem proving atom structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Backhouse, R.C., Hoogendijk, P., Voermans, E., van der Woude, J.C.S.P: A relational theory of datatypes. Eindhoven University of Technology, Dept. of Mathematics and Computer Science (1992)Google Scholar
  2. 2.
    Berghammer, R., Hattensperger, C., Schmidt, G.: RALF — A relation-algebraic formula manipulation system and proof checker. In: Nivat, M., Rattray, C., Rus, T., Scollo, G. (Eds.): Proc. 3rd Conference on Algebraic Methodology and Software Technology — AMAST '93. Series: Workshops in Computing, Springer-Verlag (1994) 407–408Google Scholar
  3. 3.
    Berghammer, R., Schmidt, G.: Relational specifications. In: Rauszer C. (ed.): Algebraic Methods in Logic and in Computer Science. Series: Banach Center Publications 28, Polish Academy of Sciences (1993) 167–190Google Scholar
  4. 4.
    Birkhoff, G.: Lattice Theory. AMS Colloquium Publications 25 (31967)Google Scholar
  5. 5.
    Brink, C., Schmidt, G.: Relational methods in computer science. Schloß Dagstuhl, Seminar Nr. 9403, Technischer Bericht Nr. 80 (1994)Google Scholar
  6. 6.
    Church, A.: A Formulation of the Simple Theory of Types. In: Journal of Symbolic Logic (1940) 56Google Scholar
  7. 7.
    Desharnais, J., Baltagi, S., Chaib-draa, B.: Simple weak sufficient conditions for sharpness. Université Laval, Quebec, Research Report DIUL-RR-9404 (1994)Google Scholar
  8. 8.
    Gritzner, T.F.: Die Axiomatik abstrakter Relationenalgebren: Darstellung der Grundlagen und Anwendung auf das Unschärfeproblem relationaler Produkte. Technische Universität München, Diploma Thesis, also available as report: TUM-INFO-04-91 (1991)Google Scholar
  9. 9.
    Gritzner, T.F.: wp-Kalkül und relationale Spezifikation kommunizierender Systeme. Technische Universität München, Doctoral Dissertation (1995) Herbert Utz Verlag Wissenschaft, ISBN 3-931327-64-7 (1996)Google Scholar
  10. 10.
    Haeberer, A.M. (Ed.): Relational methods in computer science. Proceedings of PARATI '95. In preparation.Google Scholar
  11. 11.
    Henkin, L., Monk, J.D., Tarski, A., Cylindric Algebras, Parts I & II, Series: Studies in Logic and the Foundations of Mathematics 64 (1971) & 115 (1985), North-Holland Publ.Co.Google Scholar
  12. 12.
    Hoare, C.A.R., He Jifeng: The weakest prespecification, parts I&II. In: Fundamenta Informaticae IX (1986) 51–84 & 217–252Google Scholar
  13. 13.
    Jónsson, B., Tarski, A.: Boolean algebras with operators, parts I&II. In: American Journal of Mathematics 73 (1951) 891–939 & 74 (1952) 127–167Google Scholar
  14. 14.
    Kawahara, Y., Furusawa, H.: An algebraic formalization of fuzzy relations. Draft paper (April 19, 1995)Google Scholar
  15. 15.
    Lyndon, R.C., The representation of relation(al) algebras, parts I&II, in: Annals of Mathematics (II) 51 (1950) 707–729 & 63 (1956) 294–307, Princeton University PressGoogle Scholar
  16. 16.
    Maddux, R.: Finite integral relation algebras. In: Comer, S.D. (ed.), Universal Algebra and Lattice Theory, Lecture Notes in Mathematics 1149 (1985) 175–197, Springer-VerlagGoogle Scholar
  17. 17.
    Nipkow, T.: Term Rewriting and Beyond — Theorem Proving in Isabelle. In: Formal Aspects of Computing 1 (1989) 320–338Google Scholar
  18. 18.
    Nipkow, T.: Order-Sorted Polymorphism in Isabelle. In: Huet, G., Plotkin, G. (eds.): Logical Environments. Cambridge University Press (1993) 164–188Google Scholar
  19. 19.
    von Oheimb, D.: Zur Konstruktion eines auf Isabelle gestützten Beweissystems für die Relationenalgebra. Technische Universität München, Praktische Semesterarbeit (1995)Google Scholar
  20. 20.
    Ounalli, H., Jaoua, A.: On fuzzy difunctional relations. Draft paper presented at 2nd RelMiCS — PARATI '95.Google Scholar
  21. 21.
    Paulson, L.C.: ML for the Working Programmer. Cambridge University Press (1991)Google Scholar
  22. 22.
    Paulson, L.C.: Isabelle — A Generic Theorem Prover. Lecture Notes in Computer Science 828 (1994)Google Scholar
  23. 23.
    Rasmussen, O.: Formalizing Ruby in Isabelle ZF. In: Paulson, L.C. (Ed.): Proceedings of the First Isabelle Users Workshop. University of Cambridge (1995) 246–265Google Scholar
  24. 24.
    de Roever, W.P.: Recursive Program Schemes: Semantics and Proof Theory. Vrije Universiteit te Amsterdam, Doctoral Dissertation (1974)Google Scholar
  25. 25.
    Schmidt, G., Ströhlem, Th.: Relations and Graphs. Series: EATCS Monographs in Computer Science, Springer-Verlag (1993)Google Scholar
  26. 26.
    Tarski, A.: On the calculus of relations. In: Journal of Symbolic Logic 6 (1941) 73–89Google Scholar
  27. 27.
    Tarski, A., Givant, S.: A Formalization of Set Theory Without Variables. AMS Colloquium Publications 41 (1987)Google Scholar
  28. 28.
    Zierer, H.: Programmierung mit Funktionsobjekten: Konstruktive Erzeugung semantischer Bereiche und Anwendung auf die partielle Auswertung. Technische Universität München, Doctoral Dissertation, also available as: TUM-I8803 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • David von Oheimb
    • 1
  • Thomas F. Gritzner
    • 2
  1. 1.Fakultät für InformatikTechnische Universität MünchenMünchenGermany
  2. 2.Universität der Bundeswehr MünchenNeubibergGermany

Personalised recommendations