A practical implementation of simple consequence relations using inductive definitions

  • Seán Matthews
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1249)


Logical frameworks such as the Edinburgh LF or Isabelle are not suitable for general metatheory, since they do not allow induction. On the other hand it is hard to encode a logic in an inductive definition-style framework so that it is usable for object theory. We propose a solution to this problem that borrows techniques from the type-theory tradition of logical frameworks for use with a language of inductive definitions, providing us with a notation suitable for practical object and metatheory both.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Avron. Simple consequence relations. Information and Computation, 92:105–139, 1991.Google Scholar
  2. 2.
    A. Avron. Axiomatic systems, deduction and implication. J. Logic Computat., 2:51–98, 1992.Google Scholar
  3. 3.
    A. Avron, F. Honsell, I. Mason, and R. Pollack. Using typed lambda calculus to implement formal systems on a machine. J. Automated Reasoning, 9:309–352, 1992.Google Scholar
  4. 4.
    D. Basin and S. Matthews. Structuring metatheory on inductive definitions. In M. A. McRobbie and J. K. Slaney, editors, Proc. CADE-13. Springer, Berlin, 1996.Google Scholar
  5. 5.
    S. Feferman. Finitary inductive systems. In Logic Colloquium '88. North-Holland, Amsterdam, 1990.Google Scholar
  6. 6.
    J.-Y. Girard. Proof Theory and Logical Complexity, vol. 1. Bibliopolis, Naples, 1987.Google Scholar
  7. 7.
    R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. J. ACM, 40:143–184, 1993.Google Scholar
  8. 8.
    S. Matthews. Implementing FS0 in Isabelle: adding structure at the metalevel. In J. Calmet and C. Limongelli, editors, Proc. Disco'96. Springer, Berlin, 1996.Google Scholar
  9. 9.
    R. McDowell and D. Miller. A logic for reasoning with higher-order abstract syntax. In Proc. 12th IEEE Ann. Symp. Logic Comp. Sci. IEEE Computer Society Press, 1997.Google Scholar
  10. 10.
    R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer, editors. Selected papers on Automath. Elsevier, Amsterdam, 1994.Google Scholar
  11. 11.
    L. C. Paulson. The foundation of a generic theorem prover. J. Automated Reasoning, 5:363–397, 1989.CrossRefGoogle Scholar
  12. 12.
    L. C. Paulson. Isabelle: A generic theorem prover. Springer, Berlin, 1994.Google Scholar
  13. 13.
    F. Pfenning. Elf: A language for logic definition and verified meta-programming. In Proc. 4th IEEE Ann. Symp. Logic Comp. Sci. IEEE Computer Society Press, 1989.Google Scholar
  14. 14.
    E. Rohwedder. Verifying the meta-theory of deductive systems. thesis proposal, CMU, 1994.Google Scholar
  15. 15.
    C. Talcott. A theory of binding structures, and applications to rewriting. Theoret. Comput. Sci., 112:99–143, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Seán Matthews
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations