Skip to main content

Minlog: A minimal logic theorem prover

  • 202 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 1249)

Abstract

Minlog is a theorem prover for propositional minimal logic and Heyting's intuitionist logic. It implements a decision procedure based on a cut-free sequent calculus formulation of these systems. While the method it uses is rather unsophisticated, on small problems Minlog is fast. It achieves speed by being carefully coded (in C) and by eliminating many obvious redundancies in proof searches.

It is thus useful as a point of comparison, since it represents what can be done by brute force rather than intelligence. The decision problem for the logics concerned is PSPACE hard so intelligence should easily triumph over mere speed. Minlog provides a suitable baseline for evaluating implemented systems.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-63104-6_27
  • Chapter length: 4 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-69140-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Dyckhoff, Contraction-free Sequent Calculi for Intuitionistic Logic, Journal of Symbolic Logic 57 (1992) pp. 795–807.

    MathSciNet  CrossRef  Google Scholar 

  2. F. Fitch, Symbolic Logic, New York, Ronald Press, 1952.

    MATH  Google Scholar 

  3. A. Heyting, Intuitionism, an Introduction, Amsterdam, North-Holland, 1956.

    MATH  Google Scholar 

  4. I. Johansson, Der Minimalkalkl, ein reduzierter intuitionistischer Formalismus, Compositio Mathematica 4 (1936) pp. 119–136.

    MATH  Google Scholar 

  5. J. Slaney, Minlog, Technical report TR-ARP-12-94, Australian National University, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Slaney, J. (1997). Minlog: A minimal logic theorem prover. In: McCune, W. (eds) Automated Deduction—CADE-14. CADE 1997. Lecture Notes in Computer Science, vol 1249. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63104-6_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-63104-6_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63104-0

  • Online ISBN: 978-3-540-69140-2

  • eBook Packages: Springer Book Archive