Some pitfalls of LK-to-LJ translations and how to avoid them

  • Uwe Egly
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1249)


In this paper, we investigate translations from a classical cut-free sequent calculus LK into an intuitionistic cut-free sequent calculus LJ. Translations known from the literature rest on permutations of inferences in classical proofs. We show that, for some classes of first-order formulae, all minimal LJ-proofs are non-elementary but there exist short LK-proofs of the same formula. Similar results are obtained even if some fragments of intuitionistic first-order logic are considered. The size of the corresponding minimal search spaces for LK and LJ are also non-elementarily related. We show that we can overcome these difficulties by extending LJ with an analytic cut rule.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Eder. Relative Complexities of First Order Calculi. Vieweg, Braunschweig, 1992.Google Scholar
  2. 2.
    U. Egly. On Different Structure-preserving Translations to Normal Form. J. Symbolic Computation, 22:121–142, 1996.Google Scholar
  3. 3.
    U. Egly. On Definitional Translations to Normal Form for Intuitionistic Logic. Fundamenta Informaticae, 29(1,2):165–201, 1997.Google Scholar
  4. 4.
    G. Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeitschrift, 39:176–210, 405–431, 1935. English translation in [13].CrossRefGoogle Scholar
  5. 5.
    G. Mints. Proof Theory in the USSR 1925–1969. J. Symbolic Logic, 56(2):385–424, 1991.Google Scholar
  6. 6.
    G. Mints. Resolution Strategies for the Intuitionistic Logic. In B. Mayoh, E. Tyugu, and J. Penyam, editors, Constraint Programming, Nato ASI Series, pages 289–311. Springer Verlag, 1994.Google Scholar
  7. 7.
    V. P. Orevkov. On Glivenko Sequent Classes. In V. P. Orevkov, editor, The calculi of Symbolic Logic I, volume 98, pages 147–173. Steklov Institute of Mathematics, 1971.Google Scholar
  8. 8.
    V. P. Orevkov. Lower Bounds for Increasing Complexity of Derivations after Cut Elimination. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im V. A. Steklova AN SSSR, 88:137–161, 1979. English translation in J. Soviet Mathematics, 2337–2350, 1982.Google Scholar
  9. 9.
    D. A. Plaisted and S. Greenbaum. A Structure-Preserving Clause Form Translation. J. Symbolic Computation, 2:293–304, 1986.Google Scholar
  10. 10.
    D. Pym, E. Ritter, and L. Wallen. On the Intuitionistic Force of Classical Search. In P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, editors, Theorem Proving with Analytic Tableaux and Related Methods, pages 295–311. Springer Verlag, 1996.Google Scholar
  11. 11.
    D. Pym, E. Ritter, and L. Wallen. Proof-Terms for Classical and Intuitionistic Resolution. In M.A. McRobbie and J. K. Slaney, editors, Proceedings of the Conference on Automated Deduction, pages 17–31. Springer Verlag, 1996.Google Scholar
  12. 12.
    R. Statman. Intuitionistic Propositional Logic is Polynomial-Space Complete. J. Theoretical Computer Science, 9:67–72, 1979.Google Scholar
  13. 13.
    M. E. Szabo, editor. The Collected Papers of Gerhard Gentzen. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, 1969.Google Scholar
  14. 14.
    G. Takeuti. Proof Theory, volume 81 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, 1975.Google Scholar
  15. 15.
    G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus. In J. Siekmann and G. Wrightson, editors, Automation of Reasoning, pages 466–483. Springer Verlag, 1983.Google Scholar
  16. 16.
    A. Voronkov. Theorem Proving in Non-standard Logics Based on the Inverse Method. In D. Kapur, editor, Proceedings of the Conference on Automated Deduction, pages 648–662. Springer Verlag, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Uwe Egly
    • 1
  1. 1.Abt. Wissensbasierte Systeme 184/3TU WienWien

Personalised recommendations