Skip to main content

Automatic detection of sulcal bottom lines in MR images of the human brain

  • Posters
  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1230))

Abstract

This paper describes an automatic procedure for extracting sulcal bottom lines from MR (magnetic resonance) images of the human brain, which will serve as a tool for landmark extraction as well as for investigating the morphometry of sulci. The procedure consists of a sequence of several image processing steps, including morphological operators and a constrained distance transform which provides information about sulcal depth at each location.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ono, S. Kubik, C.D. Abernathy. Atlas of the cerebral sulci. Georg Thieme Verlag, Stuttgart, New York, 1990.

    Google Scholar 

  2. T. Paus, F. Tomaiuolo, N. Otaky, D. MacDonald, M. Petrides, J. Atlas, R. Morris, A.C. Evans. Human cingulate and paracingulate sulci: pattern, variability, asymmetry, and probabilistic map. Cerebral Cortex, 6:207–214, Mar/Apr 1996.

    PubMed  Google Scholar 

  3. P.M. Thompson, C.Schwartz, R.T. Lin, A.A. Khan, A.T. Toga. Three-dimensional statistical analysis of sulcal variability in the human brain. The Journal of Neuroscience, 16(13):4261–4274, 1996.

    PubMed  Google Scholar 

  4. J. Declerck, G. Subsol, J.-P. Thirion, N. Ayache. Automatic retrieval of anatomical structures in 3D medical images. In N. Ayache, editor, Computer Vision, Virtual Reality and Robotics in Medicine, pages 153–162, Nice, France, April 1995. Springer Lecture Notes, 905.

    Google Scholar 

  5. A. Guéziec, N. Ayache. Smoothing and matching of 3-d space curves. International Journal of Computer Vision, 12(1):79–104, 1994.

    Google Scholar 

  6. O. Monga, S. Benayoun. Using partial derivatives of 3d images to extract typical surface features. Computer vision and image understanding, 61(2):171–189, March 1995.

    Google Scholar 

  7. J.P. Thirion, A. Gourdon. The marching lines algorithm: new results and proofs. Technical Report No. 1881, April 1993.

    Google Scholar 

  8. R.L. Ogniewicz, G. Szekely, O. Kübler. Detection of prominent boundary points based on structural characteristics of the hierarchic medial axis transform. In H. (Hrsg.) Pöppl, S. H.; Handels, editor, 15. DAGM-Symposium, Mustererkennung 1993, pages 321–331. Springer Verlag, 1993.

    Google Scholar 

  9. Yaorong Ge, J.Michael Fitzgerald, Benoit M. Dawant, Jun Bao, Robert M. Kessler, Richard A. Margolin. Accurate localization of cortical convolutions in MR brain images. IEEE Transactions on Medical Imaging, 15(4):418–428, Aug. 1996.

    Google Scholar 

  10. M. Valliant, C. Davatzikos, R.N. Bryan. Finding 3D parametric representations of the deep cortical folds. In Proc. Mathematical Methods in biomedical image analysis (MMBIA 96), pages 151–157, San Francisco, CA, June 1996. IEEE Computer Society.

    Google Scholar 

  11. G. Lohmann, F. Kruggel. Extracting lines of maximal depth from MRI images of the human brain. In Proc. Intern. Conf. on Pattern Recognition, Wien, Aug. 1996.

    Google Scholar 

  12. P.W. Verbeek, L. Dorst, B.J.H.Verwer, F.C.A. Groen. Collision avoidance and path finding through constrained distance transformation in robot state space. In Proc. Intelligent Autonomous Systems, pages 634–641, Amsterdam, The Netherlands, Dec. 1986.

    Google Scholar 

  13. G. Borgefors. Distance transforms in arbitrary dimensions. Computer Vision, Graphics, and Image Processing, 27:321–345, 1984.

    Google Scholar 

  14. T.C.Lee, R.L.Kashyap, C.N. Chu. Building skeleton models via 3-d medial surface axis thinning algorithms. Computer Vision, Graphics, and Image Processing, 56(6):462–478, 1994.

    Google Scholar 

  15. R.L. Ogniewicz, M. Ilg. Voronoi skeletons: theory and applications. In Proc. Computer Vision and Pattern Recognition (CVPR 92), pages 63–69. Computer Society Press, 1992.

    Google Scholar 

  16. Y.F. Tsao, K.S. Fu. A parallel thinning algorithm for 3d pictures. Computer Graphics Image Proc., 17:315–331, 1981.

    Google Scholar 

  17. G. Malandain. personal communication, July 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

James Duncan Gene Gindi

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lohmann, G., Kruggel, F., von Cramon, D.Y. (1997). Automatic detection of sulcal bottom lines in MR images of the human brain. In: Duncan, J., Gindi, G. (eds) Information Processing in Medical Imaging. IPMI 1997. Lecture Notes in Computer Science, vol 1230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63046-5_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-63046-5_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63046-3

  • Online ISBN: 978-3-540-69070-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics