Skip to main content

Registration of 3D medical images using simple morphological tools

Part of the Lecture Notes in Computer Science book series (LNCS,volume 1230)

Abstract

Multimodal medical images are often of too different a nature to be registered on the basis of the image grey values only. It is the purpose of this paper to construct operators that extract similar structures from these images that will enable registration by simple grey value based methods, such as maximization of cross-correlation. These operators can be constructed using only basic morphological tools such as erosion and dilation. Simple versions of these operators are easily implemented on any computer system. We will show that accurate registration of images of various modalities (MR, CT, SPECT and PET) can be obtained using this approach.

Keywords

  • Registration Method
  • Registration Result
  • Voxel Dimension
  • Skin Edge
  • Multimodality Image Registration

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-63046-5_16
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-69070-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chang, H. & Fitzpatrick, J. M. (1992), ‘A technique for accurate magnetic resonance imaging in the presence of field inhomogeneities', IEEE Transactions on medical imaging 11, 319–329.

    Google Scholar 

  • Collignon, A., Maes, F., Delaere, D., Vandermeulen, D., Suetens, P. & Marchal, G. (1995), Automated multimodality image registration using information theory, in Y. Bizais & C. Barillot, eds, ‘Information Processing in Medical Imaging', Kluwer Academic Publishers, Dordrecht, pp. 263–274.

    Google Scholar 

  • Evans, A. C., Marrett, S., Collins, L. & Peters, T. M. (1989), Anatomical-functional correlative analysis of the human brain using three dimensional imaging systems, in R. Schneider, S. Dwyer III & R. Jost, eds, 'Medical imaging: image processing', Vol. 1092, SPIE press, Bellingham, WA, pp. 264–274.

    Google Scholar 

  • Haralick, R. M., Sternberg, S. R. & Zhuang, X. (1987), ‘Image analysis using mathematical morphology', IEEE transactions on pattern analysis and machine intelligence 9(4), 532–550.

    Google Scholar 

  • Hemler, P. F., van den Elsen, P. A., Sumanaweera, T. S., Napel, S., Drace, J. & Adler, J. R. (1995), A quantitative comparison of residual error for three different multimodality registration techniques, in Y. Bizais, C. Barillot & R. di Paola, eds, ‘Information processing in medical imaging', Kluwer, pp. 389–390.

    Google Scholar 

  • Hill, D. L. G., Hawkes, D. J., Crossman, J. E., Gleeson, M. J., Cox, T. C. S., Bracey, E. C. M. L., Strong, A. J. & Graves, P. (1991), ‘Registration of MR and CT images for skull base surgery using pointlike anatomical features', British journal of radiology 64(767), 1030–1035.

    PubMed  Google Scholar 

  • Hill, D. L. G., Studholme, C. & Hawkes, D. J. (1994), Voxel similarity measures for automated image registration, in R. Robb, ed., 'Visualization in biomedical computing', Vol. 2359, SPIE Press, Bellingham, WA, pp. 205–216.

    Google Scholar 

  • Kramer, H. P. & Bruckner, J. B. (1975), ‘Iterations of a non-linear transformation for enhancement of digital images', Pattern recognition 7, 53–58.

    Google Scholar 

  • Levin, D. N., Pelizzari, C. A., Chen, G. T. Y., Chen, C. & Cooper, M. D. (1988), ‘Retrospective geometric correlation of MR, CT, and PET images', Radiology 169(3), 817–823.

    PubMed  Google Scholar 

  • Maes, F., Collignon, A., Vandermeulen, D., Marchal, G. & Suetens, P. (1996a), Multi-modality image registration by maximization of mutual information, in ‘Mathematical methods in biomedical image analysis', IEEE computer society press, Los Alamitos, CA, pp. 14–22.

    Google Scholar 

  • Maes, F., Collignon, A., Vandermeulen, D., Marchal, G. & Suetens, P. (1996b), ‘Multi-modality image registration by maximization of mutual information', IEEE Transactions on medical imaging. In press.

    Google Scholar 

  • Maintz, J. B. A., van den Elsen, P. A. & Viergever, M. A. (1994), Using geometrical features to match CT and MR brain images, in L. Beolchi & M. Kuhn, eds, ‘Medical imaging, analysis of multimodality 2D/3D images', Vol. 19 of Studies in Health, Technology and Informatics, IOS Press, Amsterdam, pp. 43–52.

    Google Scholar 

  • Maintz, J. B. A., van den Elsen, P. A. & Viergever, M. A. (1995), Comparison of feature-based matching of CT and MR brain images, in N. Ayache, ed., ‘Computer vision, virtual reality, and robotics in medicine', Vol. 905 of Lecture notes in computer science, Springer-Verlag, Berlin, pp. 219–228.

    Google Scholar 

  • Maintz, J. B. A., van den Elsen, P. A. & Viergever, M. A. (1996), ‘Evaluation of ridge seeking operators for multimodality medical image matching', IEEE Transactions on pattern analysis and machine intelligence 18(4), 353–365.

    Google Scholar 

  • Maintz, J. B. A., van den Elsen, P. A. & Viergever, M. A. (1997), ‘Comparison of edge-based and ridge-based registration of CT and MR brain images', Medical image analysis 1(2), 151–161. in press.

    Google Scholar 

  • Pelizzari, C. A., Chen, G. T. Y., Spelbring, D. R., Weichselbaum, R. R. & Chen, C. T. (1989), ‘Accurate three-dimensional registration of CT, PET, and/or MR images of the brain', Computer assisted tomography 13(1), 20–26.

    Google Scholar 

  • Schad, L. R., Boesecke, R., Schlegel, W., Hartmann, G. H., Sturm, G. H., Strauss, L. G. & Lorenz, W. (1987), ‘Three dimensional image correlation of CT, MR, and PET studies in radiotherapy treatment of brain tumors', Computer assisted tomography 11, 948–954.

    Google Scholar 

  • Serra, J. (1982), Image analysis and mathematical morphology, Academic press.

    Google Scholar 

  • Serra, J. (1988), Image analysis and mathematical morphology, volume 2: theoretical advances, Academic press.

    Google Scholar 

  • Studholme, C., Hill, D. L. G. & Hawkes, D. J. (1995), Multi resolution voxel similarity measures for MR-PET registration, in Y. Bizais & C. Barillot, eds, ‘Information Processing in Medical Imaging', Kluwer Academic Publishers, Dordrecht, pp. 287–298.

    Google Scholar 

  • Taylor, R. H., Lavallée, S., Burdea, G. C. & Mösges, R. (1996), Computer-integrated surgery, Technology and clinical applications, MIT Press, Cambridge, MA.

    Google Scholar 

  • van den Elsen, P. A., Maintz, J. B. A., Pol, E. & Viergever, M. A. (1995), ‘Automatic registration of CT and MR brain images using correlation of geometrical features', IEEE Transactions on medical images 14(2), 384–398.

    Google Scholar 

  • van den Elsen, P. A., Pol, E. J. D. & Viergever, M. A. (1993), ‘Medical image matching-a review with classification', IEEE Engineering in medicine and biology 12(1), 26–39.

    Google Scholar 

  • van den Elsen, P. A., & Viergever, M. A. (1994), ‘Marker guided multimodality matching of the brain', European radiology 4, 45–51.

    Google Scholar 

  • van den Elsen, P. A., Viergever, M. A., van Huffelen, A. C., van der Meij, W. & Wieneke, G. H. (1991), ‘Accurate matching of electromagnetic dipole data with CT and MR images', Brain topography 3(4), 425–432.

    PubMed  Google Scholar 

  • Vandermeulen, D. (1991), Methods for registration, interpolation and interpretation of three-dimensional medical image data for use in 3-D display, 3-D modelling and therapy planning, PhD thesis, University of Leuven, Belgium.

    Google Scholar 

  • Viergever, M. A., Maintz, J. B. A., Stokking, R., van den Elsen, P. A., & Zuiderveld, K. J. (1995), Matching and integrated display of brain images from multiple modalities, in 'Medical Imaging', Vol. 2434, SPIE Press, Bellingham, WA, pp. 2–13.

    Google Scholar 

  • Viola, P. & Wells III, W. (1995), Alignment by maximization of mutual information, in ‘International conference on computer vision', IEEE computer society press, Los Alamitos, CA, pp. 16–23.

    Google Scholar 

  • West et al., J. (1996), Comparison and evaluation of retrospective intermodality image registration techniques, in M. H. Loew & K. M. Hanson, eds, 'sPIE proc MI', Vol. 2710, pp. 332–347.

    Google Scholar 

  • Woods, R., Maziotta, J. & Cherry, S. (1993), ‘MRI-PET registration with automated algorithm', journal of computer assisted tomography 17(4), 536–546.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Antoine Maintz, J.B., van den Elsen, P.A., Viergever, M.A. (1997). Registration of 3D medical images using simple morphological tools. In: Duncan, J., Gindi, G. (eds) Information Processing in Medical Imaging. IPMI 1997. Lecture Notes in Computer Science, vol 1230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63046-5_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-63046-5_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63046-3

  • Online ISBN: 978-3-540-69070-2

  • eBook Packages: Springer Book Archive