Advertisement

Some results on Propositional Dynamic Logic with fixed points

  • Igor Rents
  • Nikolaj Shilov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1234)

Abstract

We present a Gentzen-style cut-free sound and complete axiomatization for Propositional Dynamic Logic (PDL). The axiomatization exploits the conservative extension of PDL by means of a new program constructor for v-times iteration of a program, where v has a natural number value. Then we expand our axiomatization PDL to cover the extension of PDL by the least and the greatest fixed points (PDL+MuC).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fisher M.J., Ladner R.E.: Prepositional dynamic logic of regular programs. J. Comput. System Sci., 18, n.2., (1979), 194–211Google Scholar
  2. 2.
    Harel D.: Dynamic Logic. in Handbook of Philosophical Logic, 2, Reidel, (1984).Google Scholar
  3. 3.
    Kozen D.: Results on the Prepositional Mu-Calculus. Theoretical Computer Science, 27, n.3, (1983), 333–354.Google Scholar
  4. 4.
    Pratt V.R.: A decidable Mu-Calculus: preliminary report. 22-nd IEEE Symp. on Foundation of Computer Science, (1982), 421–427.Google Scholar
  5. 5.
    Streett R.S., Emerson E.A.: An Automata Theoretic Decision Procedure for the Prepositional Mu-Calculus. Information and Computation, 81, n.3, (1989), 249–264.Google Scholar
  6. 6.
    Walukiewicz I.: A Complete Deduction System for the Μ-Calculus. Doctoral Thesis, Warsaw, (1993).Google Scholar
  7. 7.
    Bull R.A.: Cut elimination for prepositional dynamic logic without *. Zeitschrift fuer Mathematische Logik und Grundlagen der Mathematik, 38, (1992), 85–100.Google Scholar
  8. 8.
    Pliuskeviciene A.U.: Index Technique for Prepositional Dynamic logic. (Russian) 10-th USSR Conf. on Math. Log., Alma-Ata, 1990, 130.Google Scholar
  9. 9.
    Shilov N.V.: Prepositional Dynamic Logic with Fixed Points: Algorithmic tools for verification of Finite State Machines. Int. Symp. on Log. Found. of Comp. Sci. LFCS'92, LNCS, 620, (1992), 452–458.Google Scholar
  10. 10.
    Shilov N.V. Program schemata vs. automata for decidability of program logics. to appear in Theoretical Computer Science, 175, April 1997.Google Scholar
  11. 11.
    Burch J.R. Clarke E.M. McMillan K.L. Dill D.L. Hwang L.J.: Symbolic Model Checking: 1020 States and Beyond. Information and Computation, 98, n.2, (1992), 142–170.Google Scholar
  12. 12.
    Emerson E.A. Jutla C.S. Sistla A.P.: On model-checking for fragments of Mu-Calculus. Int. Conf. on Computer-Aided Verification CAV'93, LNCS, 698, (1993), 385–396.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Igor Rents
    • 1
  • Nikolaj Shilov
    • 2
  1. 1.Institute of Computational TechnologiesRussia
  2. 2.Institute of Informatics SystemsRussia

Personalised recommendations