Advertisement

Interpretation of the full computation tree logic CTL* on sets of infinite sequences

  • Ulrich Nitsche
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1234)

Abstract

Formulae of the full computation tree logic CTL* are usually interpreted on infinite trees. In this paper, we propose how to interpret them on Ω-languages, i.e. on sets of infinite sequences, even if the Ω-language does not have a one-to-one corresponding tree representation.

Keywords

CTL* Ω-Languages Verification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Berstel. Transductions and Context-Free Languages. Studienbücher Informatik. Teubner Verlag, Stuttgart, first edition, 1979.Google Scholar
  2. 2.
    E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using branching-time temporal logic. In D. Kozen, editor, Logic of Programs 1981, volume 131 of Lecture Notes in Computer Science, pages 52–71. Springer Verlag, 1982.Google Scholar
  3. 3.
    E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Transactions on Programming Languages and Systems, 8(2):244–263, 1986.Google Scholar
  4. 4.
    S. Eilenberg. Automata, Languages and Machines, volume A. Academic Press, New York, 1974.Google Scholar
  5. 5.
    E. A. Emerson. Temporal and modal logic. In van Leeuwen [15], pages 995–1072.Google Scholar
  6. 6.
    M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, Reading, Mass., first edition, 1978.Google Scholar
  7. 7.
    J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading, Mass., first edition, 1979.Google Scholar
  8. 8.
    O. Kupferman and M. Y. Vardi. Module checking. In R. Alur and T. A. Henzinger, editors, CAV'96, volume 1102 of Lecture Notes in Computer Science, pages 75–86, New Brunswick, N.J., 1996. Springer Verlag.Google Scholar
  9. 9.
    R. P. Kurshan. Computer-Aided Verification of Coordinating Processes. Princeton University Press, Princeton, New Jersey, first edition, 1994.Google Scholar
  10. 10.
    U. Nitsche. Verification of Co-Operating Systems and Behaviour Abstraction. PhD thesis, University of Frankfurt, Germany. handed in 1996.Google Scholar
  11. 11.
    U. Nitsche. Propositional linear temporal logic and language homomorphisms. In A. Nerode and Y. V. Matiyasevich, editors, Logical Foundations of Computer Science '94, St. Petersburg, volume 813 of Lecture Notes in Computer Science, pages 265–277. Springer Verlag, 1994.Google Scholar
  12. 12.
    U. Nitsche. A verification method based on homomorphic model abstraction. In Proceedings of the 13th Annual ACM Symposium on Principles of Distributed Computing, page 393, Los Angeles, 1994. ACM Press.Google Scholar
  13. 13.
    U. Nitsche. Verification and behavior abstraction — towards a tractable verification technique for large distributed systems. Journal of Systems and Software, 33(3):273–285, June 1996.Google Scholar
  14. 14.
    W. Thomas. Automata on infinite objects. In van Leeuwen [15], pages 133–191.Google Scholar
  15. 15.
    J. van Leeuwen, editor. Formal Models and Semantics, volume B of Handbook of Theoretical Computer Science. Elsevier, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Ulrich Nitsche
    • 1
  1. 1.Department of Computer ScienceUniversity of ZurichZurichSwitzerland

Personalised recommendations