Advertisement

Basic forward chaining construction for logic programs

  • V. W. Marek
  • A. Nerode
  • J. B. Remmel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1234)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABW87]
    K. Apt, H.A. Blair, and A. Walker. Towards a theory of declarative knowledge. Foundations of Deductive Databases and Logic Programming, pages 89–142, 1987.Google Scholar
  2. [Apt90]
    K. Apt. Logic programming. Handbook of Theoretical Computer Science, pages 493–574, 1990.Google Scholar
  3. [GL88]
    M. Gelfond and V. Lifschitz. The stable semantics for logic programs. Proceedings of the 5th International Symposium on Logic Programming, pages 1070–1080, 1988.Google Scholar
  4. [GS92]
    J. Grant and V.S. Subrahmanian. Reasoning about inconsistent knowledge bases. IEEE Trans. on Knowledge and Data Engineering, to appear.Google Scholar
  5. [JS72b]
    C.G. Jockusch and R.I. Soare. π10 classes and degrees of theories. Transactions of American Mathematical Society, 173:33–56, 1972.Google Scholar
  6. [KL89]
    M. Kifer and E. Lozinskii. RI: A logic for reasoning about inconsistency. TARK IV, pages 253–262, 1989.Google Scholar
  7. [KN93a]
    W. Kohn and A. Nerode. Models for Hybrid Systems: Automata, Topologies, Controllability, Observability. In: Hybrid Systems, R.L. Grossman, A. Nerode, A.P. Ravn, H. Rischel, eds. Springer LN in CS 736, pages 317–356, 1993.Google Scholar
  8. [MNR90]
    W. Marek, A. Nerode, and J.B. Remmel. Nonmonotonic rule systems I. Annals of Mathematics and Artificial Intelligence, 1:241–273, 1990.Google Scholar
  9. [MNR92c]
    W. Marek, A. Nerode, and J. B. Remmel. Nonmonotonic rule systems II. Annals of Mathematics and Artificial Intelligence, 5:229–263, 1992.Google Scholar
  10. [MNR92a]
    W. Marek, A. Nerode, and J. B. Remmel. The stable models of predicate logic programs. Proceedings of International Joint Conference and Symposium on Logic Programming, pages 446–460, Boston, MA, 1992. MIT Press.Google Scholar
  11. [MNR95]
    W. Marek, A. Nerode, and J. B. Remmel. Complexity of Normal Default Logic and Related Modes of Nonmonotonic Reasoning, Proceedings of 10th Annual IEEE Symposium on Logic in Computer Science, pp. 178–187, 1995.Google Scholar
  12. [MNR93b]
    W. Marek, A. Nerode, and J. B. Remmel. Context for Belief Revision: FC-Normal Nonmonotonic Rule Systems, Annals of Pure and Applied Logic 67(1994) pp. 269–324.Google Scholar
  13. [MT91]
    W. Marek and M. Truszczyński. Autoepistemic logic. Journal of the ACM, 38:588–619, 1991.Google Scholar
  14. [MT93]
    W. Marek and M. Truszczyński. Nonmonotonic Logic — Context-dependent reasonings 1993, Springer Verlag.Google Scholar
  15. [Prz87]
    T. Przymusinski, On the declarative semantics of stratified deductive databases and logic programs, Foundations of Deductive Databases and Logic Programming, pages 193–216, 1987.Google Scholar
  16. [RDB89]
    M. Reinfrank, O. Dressler, and G. Brewka. On the relation between truth maintenance and non-monotonic logics. Proceedings of IJCAI-89, pages 1206–1212.Google Scholar
  17. [Rei80]
    R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.Google Scholar
  18. [VGRS91]
    A. Van Gelder, K.A. Ross and J.S. Schlipf. Unfounded sets and well-founded semantics for general logic programs. Journal of the ACM 38(1991).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • V. W. Marek
    • 1
  • A. Nerode
    • 2
  • J. B. Remmel
    • 3
  1. 1.Department of Computer ScienceUniversity KentuckyLexington
  2. 2.Mathematical Sciences InstituteCornell UniversityIthaca
  3. 3.Department of MathematicsUniversity of California at San DiegoLa Jolla

Personalised recommendations