Domain-free pure type systems

  • Gilles Barthe
  • Morten Heine SØrensen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1234)


Pure type systems feature domain-specified λ-abstractions λx:A.M. We present a variant of pure type systems, which we call domain-free pure type systems, with domain-free λ-abstractions λx.M. We study the basic properties of domain-free pure type systems and establish their formal relationship with pure type systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. van Bakel, L. Liquori, S. Ronchi della Roncha, and P. Urzyczyn. Comparing cubes. In A. Nerode and Y.N. Matiyasevich, editors, Proceedings of LFCS'94, volume 813 of Lecture Notes in Computer Science, pages 353–365. Springer-Verlag, 1994. An extended version is to appear in Annals of Pure and Applied Logic.Google Scholar
  2. 2.
    H. Barendregt. Introduction to Generalised Type Systems. J. Functional Programming, 1(2):125–154, April 1991.Google Scholar
  3. 3.
    H. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, pages 117–309. Oxford Science Publications, 1992. Volume 2.Google Scholar
  4. 4.
    G. Barthe, J. Hatcliff, and M.H. SØrensen. CPS-translation and applications: the cube and beyond. In O. Danvy, editor, Proc. of the 2nd ACM SIGPLAN Workshop on Continuations, number NS-96-13 in BRICS Notes, pages 4:1–31, 1996.Google Scholar
  5. 5.
    G. Barthe, J. Hatcliff, and M.H. SØrensen. Classical pure type systems. In Proceedings of MFPS'97, Electronic Notes in Theoretical Computer Science, 1997.Google Scholar
  6. 6.
    A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5:56–68, 1940.Google Scholar
  7. 7.
    H. Curry. Functionality in combinatory logic. Proceedings of the National Academy of Science USA, 20:584–590, 1934.Google Scholar
  8. 8.
    H. Geuvers. Logics and type systems. PhD thesis, University of Nijmegen, 1993.Google Scholar
  9. 9.
    H. Geuvers and M.-J. Nederhof. A modular proof of strong normalisation for the Calculus of Constructions. Journal of Functional Programming, 1:155–189, 1991.Google Scholar
  10. 10.
    H. Geuvers and B. Werner. On the Church-Rosser property for expressive type systems and its consequence for their metatheoretic study. In Proceedings of LICS'94, pages 320–329. IEEE Computer Society Press, 1994.Google Scholar
  11. 11.
    P. Giannini and S. Ronchi Della Rocca. Characterization of typings in polymorphic type discipline. In Proceedings of LICS'88, pages 61–70. IEEE Computer Society Press, 1988.Google Scholar
  12. 12.
    D. Leivant. Polymorphic type inference. In Proceedings of POPL'83, pages 88–98. ACM Press, 1983.Google Scholar
  13. 13.
    L. Magnusson. The implementation of ALF: a proof editor based on Martin-Löf's monomorphic type theory with explicit substitution. PhD thesis, Department of Computer Science, Chalmers University, 1994.Google Scholar
  14. 14.
    P. Severi. Normalisation in lambda calculus and its relation to type inference. PhD thesis, Department of Computer Science, Technical University of Eindhoven, 1996.Google Scholar
  15. 15.
    M.H. SØrensen. Strong normalization from weak normalization in typed λ-calculi. Information and Computation, 133(1):35–71, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Gilles Barthe
    • 1
  • Morten Heine SØrensen
    • 2
  1. 1.Centrum voor Wiskunde en Informatica (CWI)GB AmsterdamThe Netherlands
  2. 2.Department of Computer ScienceUniversity of Copenhagen (DIKU)Copenhagen ØDenmark

Personalised recommendations