Advertisement

An algebraic correctness criterion for intuitionistic proof-nets

  • Philippe de Groote
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1234)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. Danos. Une application de la logique linéaire à l'étude des processus de normalisation et principalement du lambda calcul. Thèse de doctorat, Université de Paris VII, 1990.Google Scholar
  2. [2]
    V. Danos and L. Régnier. The structure of multiplicatives. Archive for Mathematical Logic, 28:181–203, 1989.Google Scholar
  3. [3]
    J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.Google Scholar
  4. [4]
    J.-Y. Girard. Quantifiers in linear logic II. Technical Report 19, Equipe de Logique Mathématique, Université de Paris VII, 1991.Google Scholar
  5. [5]
    F. Lamarche. Proof nets for intuitionistic linear logic 1: Essential nets. Technical report, Imperial College, April 1994.Google Scholar
  6. [6]
    F. Lamarche. Games semantics for full propositional linear logic. In Ninth Annual IEEE Symposium on Logic in Computer Science. IEEE Press, 1995.Google Scholar
  7. [7]
    F. Lamarche and C. Retoré. Proof nets for the lambek calculus. In M. Abrusci, C. Casadio, and G. Sandri, editors, Third Roma Workshop: Proofs and Linguistic Categories, Rapporto di Ricerca del Dipartimento de Filosofia. Università di Bologna, 1996.Google Scholar
  8. [8]
    J. Lambek. The mathematics of sentence structure. Amer. Math. Monthly, 65:154–170, 1958.Google Scholar
  9. [9]
    D. Roorda. Resource Logics: proof-theoretical investigations. PhD thesis, University of Amsterdam, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Philippe de Groote
    • 1
  1. 1.Projet CalligrammeINRIA-Lorraine & CRIN-C.N.R.S.Villers-lès-Nancy CedexFrance

Personalised recommendations