Denotational semantics for timed testing

  • Luis Fernando Llana Díaz
  • David de Frutos Escrig
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1231)


In this paper we present a denotational semantics for a timed process algebra, which is fully abstract with respect to the must testing semantics previously developed [Lla96,LdFN96]. The domain of semantic processes is made up of consistent sets of barbs, which generalize the notion of acceptance sets, in such a way that the actions that are offered but not taken in each state are also recorded. the main difficulty when defining this denotational semantics has been that the natural ordering between semantic processes cannot be proved to be complete. So an alternative stronger complete ordering has to be considered, which is proved to be consistent with the original one, in the sense that lubs of chains with respect to the new ordering are also lubs with respect to the original one.


process algebra time must testing semantics denotational semantics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BB93]
    J. C. M. Baeten and J. A. Bergstra. Real time process algebra. Formal Aspects of Computing, 3:142–188, 1993.CrossRefMATHGoogle Scholar
  2. [BK84]
    J. A. Bergstra and J. W. Klop. Process algebra for syncronous communication. Information and Control, 60:109–137, 1984.MathSciNetCrossRefMATHGoogle Scholar
  3. [dFLL+95]
    D. de Frutos, G. Leduc, L. Léonard, L. F. Llana-Díaz, C. Miguel, J. Que-mada, and G. Rabay. Time Extended LOTOS. In J. Quemada, editor, Working Draft on Enhancements to LOTOS. ISO/IEC JTC1/SC21/WG1, November 1995.Google Scholar
  4. [dNH84]
    R. de Nicola and M. C. B. Hennessy. Testing equivalences for processes. Theoretical Computer Science, 34:83–133, 1984.MathSciNetCrossRefMATHGoogle Scholar
  5. [Gro93]
    J. F. Groote. Transition system specifications with negative premises. Theoretical Computer Science, 118:263–299, 1993.MathSciNetCrossRefMATHGoogle Scholar
  6. [Hen88]
    M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.Google Scholar
  7. [Hoa85]
    C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.Google Scholar
  8. [HR95]
    M. Hennessy and T. Regan. A process algebra for timed systems. Information and Computation, 117:221–239, 1995.MathSciNetCrossRefMATHGoogle Scholar
  9. [LdFN96]
    L. F. Llana-Díaz, D. de Frutos, and M. Núñez. Testing semantics for urgent process algebras. In Third AMAST Workshop in Real Time Programming, March 1996. To appear in World Sientific: AMAST Series in Computing.Google Scholar
  10. [Lla96]
    L. F. Llana-Díaz. Jugando con el Tiempo. PhD thesis, Universidad Com-plutense de Madrid, 1996.Google Scholar
  11. [Mil89]
    R. Milner. Communication and Concurrency. Prentice Hall, 1989.Google Scholar
  12. [NS91]
    X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras. In Computer Aided Design, pages 376–398, 1991. LNCS 575.Google Scholar
  13. [OM91]
    Y. Ortega-Mallén. En Busca del Tiempo Perdido. PhD thesis, Departamento de Informática y Automática. Universidad Complutense de Madrid, 1991.Google Scholar
  14. [QdFA93]
    J. Quemada, D. de Frutos, and A. Azcorra. Tic: A timed calculus. Formal Aspects of Computing, 5:224–252, 1993.CrossRefMATHGoogle Scholar
  15. [RR86]
    G. M. Reed and A. W. Roscoe. A timed model for communicating sequential processes. In ICALP '86, pages 314–323. Springer-Verlag, 1986. LNCS 226.Google Scholar
  16. [Sch95]
    S. Schneider. An operational semantics for timed CSP. Information and Computation, 116(2):193–213, 1995.MathSciNetCrossRefMATHGoogle Scholar
  17. [Yi91]
    W. Yi. A Calculus of Real Time Systems. PhD thesis, Department of Computer Science. Chalmers University of Technology, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Luis Fernando Llana Díaz
    • 1
  • David de Frutos Escrig
    • 1
  1. 1.Dpto. Informática y AutomáticaUniversidad Complutense de MadridMadridSpain

Personalised recommendations