The invariant package of MAS

  • Manfred Göbel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1232)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Göbel, M. (1992). Reduktion G-symmetrischer Polynome für beliebige Permutationsgruppen G. Diplomarbeit. Universität PassauGoogle Scholar
  2. 2.
    Göbel, M. (1993). Using Buchberger's Algorithm in Invariant Theory. ACM SIGSAM Bulletin 27/4, 3–9Google Scholar
  3. 3.
    Göbel, M. (1995). Computing Bases for Permutation-Invariant Polynomials. Journal of Symbolic Computation 19, 285–291CrossRefGoogle Scholar
  4. 4.
    Göbel, M. (1996). Computing Bases for Permutation-Invariant Polynomials. Dissertation, Universität Tübingen. Shaker, AachenGoogle Scholar
  5. 5.
    Göbel, M. (1996). Symideal Gröbner Bases. In Harald Ganzinger, editor, Rewriting Techniques and Applications, 7th Intl. Conf., RTA-96, LNCS 1103, New Brunswick, NJ, USA, July 1996. Springer-Verlag, 48–62Google Scholar
  6. 6.
    Kraft, H.-P. (1984). Geometrische Methoden in der Invariantentheorie. Aspects of Mathematics. Vieweg, Braunschweig/WiesbadenGoogle Scholar
  7. 7.
    Kredel, H. (1990). MAS: Modula-2 Algebra System. In: Gerdt, V. P., Rostovtsev, V. A., and Shirkov, D. V. (eds.), IV International Conference on Computer Algebra in Physical Research. World Scientific Publishing Co., Singapore, 31–34Google Scholar
  8. 8.
    Lauer, E. (1976). Algorithms for Symmetrical Polynomials. In: Jenks, R. D., (ed.), ACM Symposium on Symbolic and Algebraic Computation. ACM Press, New York, 242–247Google Scholar
  9. 9.
    Noether, E. (1916). Der Endlichkeitssatz der Invarianten endlicher Gruppen. Math. Ann. 77, 89–92Google Scholar
  10. 10.
    Sturmfels, B. (1993). Algorithms in Invariant Theory. Springer, ViennaGoogle Scholar
  11. 11.
    Smith, L. (1995). Polynomial Invariants of Finite Groups. A. K. Peters, Ltd., WellesleyGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  1. 1.Wilhelm-Schickard-Institut für InformatikTübingenGermany

Personalised recommendations