Solving linear Diophantine equations using the geometric structure of the solution space

  • Ana Paula Tomás
  • Miguel Filgueiras
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1232)

Abstract

In the development of algorithms for finding the minimal solutions of systems of linear Diophantine equations, little use has been made (to our knowledge) of the results by Stanley using the geometric properties of the solution space. Building upon these results, we present a new algorithm, and we suggest the use of geometric properties of the solution space in finding bounds for searching solutions and in having a qualitative evaluation of the difficulty in solving a given system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boudet, A., Contejean E., and Devie, H.: A new AC Unification algorithm with an algorithm for solving systems of Diophantine equations. In Proceedings of the 5th Conference on Logic and Computer Science, IEEE, 289–299, 1990.Google Scholar
  2. 2.
    Clausen, M., and Fortenbacher, A.: Efficient solution of linear Diophantine equations. J. Symbolic Computation, 8, 201–216, 1989.Google Scholar
  3. 3.
    Domenjoud, E.: Outils pour la Déduction Automatique dans les Théories Associatives-Commutatives. Thése de doctorat, Université de Nancy I, 1991.Google Scholar
  4. 4.
    Elliott, E. B.: On linear homogenous Diophantine equations. Quart. J. Pure Appl. Math., 34, 348–377, 1903.Google Scholar
  5. 5.
    Filgueiras, M., and Tomás, A. P.: Fast Methods for Solving Linear Diophantine Equations. In M. Filgueiras, L. Damas (eds.) Progress in Artificial Intelligence — 6th Portuguese Conference on Artificial Intelligence, Lecture Notes in Artificial Intelligence 727, Springer-Verlag, 297–306, 1993.Google Scholar
  6. 6.
    Filgueiras, M., and Tomás, A. P.: A Fast Method for Finding the Basis of Non-negative Solutions to a Linear Diophantine Equation. J. Symbolic Computation, 19, 507–526, 1995.Google Scholar
  7. 7.
    Huet, G.: An algorithm to generate the basis of solutions to homogeneous linear Diophantine equations. Information Processing Letters, 7(3), 1978.Google Scholar
  8. 8.
    Lambert, J.-L.: Une borne pour les générateurs des solutions entières positives d'une équation diophantienne linéaire. Comptes Rendus de l'Académie des Sciences de Paris, t. 305, série I, 39–40, 1987.Google Scholar
  9. 9.
    MacMahon, P.: Combinatory Analysis, 2. Chelsea Publishing Co., 1918.Google Scholar
  10. 10.
    Moulinet-Ossola, C: Algorithmique des Réseaux et des Systémes Diophantiens Linéaires. Thèse de doctorat, Université de Nice Sophia-Antipolis, 1995.Google Scholar
  11. 11.
    Petitjean, E.: Résolution Parallèle de Contraintes Linéaires sur les Entiers Naturels. Mémoire de DEA, Université de Nancy I, 9/1996.Google Scholar
  12. 12.
    Pottier, L.: Minimal solutions of linear diophantine systems: bounds and algorithms. In R. V. Book (ed.), Proceedings of the 4th International Conference on Rewriting Techniques and Applications, Lecture Notes in Computer Science 488, Springer-Verlag, 162–173, 1991.Google Scholar
  13. 13.
    A. Schrijver, Theory of Linear and Integer Programming, Wiley-Interscience, 1986.Google Scholar
  14. 14.
    Stanley, R.P.: Linear homogeneous Diophantine equations and magic labelings of graphs. Duke Math. J., 40, 607–632, 1973.Google Scholar
  15. 15.
    Stanley, R.P.: Enumerative Combinatorics, Vol I, The Wadsworth & Brooks/Cole Mathematics Series, 1986.Google Scholar
  16. 16.
    Tomás, A. P. and Filgueiras, M.: A new method for solving linear constraints on the natural numbers. In P. Barahona, L. Moniz Pereira, A. Porto (eds.), Proceedings of the 5th Portuguese Conference on Artificial Intelligence, Lecture Notes in Artificial Intelligence 541, Springer-Verlag, 30–44, 1991.Google Scholar
  17. 17.
    Tomás, A. P.: On Solving Linear Diophantine Constraints. Tese de Doutoramento, submitted to Faculdade de Ciências da Universidade do Porto, 1997.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Ana Paula Tomás
    • 1
  • Miguel Filgueiras
    • 1
  1. 1.LIACCUniversidade do PortoPortugal

Personalised recommendations