Advertisement

On the word problem for free lattices

  • Georg Struth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1232)

Abstract

We prove completeness of a rewrite-based algorithm for the word problem in the variety of lattices and discuss the method of non-symmetric completion with regard to this variety.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Bachmair and D. Plaisted. Termination orderings for associative-commutative rewriting systems. J. Symbolic Computation, 1(4):329–349, 1985.Google Scholar
  2. 2.
    C. Delor and L. Puel. Extension of the associative path ordering to a chain of associative-commutative symbols. In C. Kirchner, editor, Rewriting Techniques and Applications, volume 690 of LNCS, pages 389–404. Springer-Verlag, 1993.Google Scholar
  3. 3.
    R. Freese, J. Ječek, and J.B. Nation. Term rewrite systems for lattice theory. J. Symbolic Computation, 16:279–288, 1993.Google Scholar
  4. 4.
    R. Freese, J. Ječek, and J.B. Nation. Free Lattices, volume 42 of Surveys and Monographs. American Mathematical Society, 1995.Google Scholar
  5. 5.
    J. Levy and J. Agustí. Bi-rewriting, a term rewriting technique for monotonic order relations. In C. Kirchner, editor, Rewriting Techniques and Applications, volume 690 of LNCS, pages 17–31. Springer-Verlag, 1993.Google Scholar
  6. 6.
    J. Levy and J. Agustí. Bi-rewrite systems. J. Symbolic Computation, 22:279–314, 1996.Google Scholar
  7. 7.
    R.N. McKenzie, G.F. McNulty, and W.F. Taylor. Algebras, Varieties and Lattices, volume I. Wadsworth & Brooks/Cole, 1987.Google Scholar
  8. 8.
    G. Struth. Non-symmetric rewriting. Technical Report MPI-I-96-2-004, Max-Planck-Institut für Informatik, Saarbrücken, 1996.Google Scholar
  9. 9.
    Ph.M. Whitman. Free lattices. Ann. of Math., 42(2):325–330, 1941.Google Scholar
  10. 10.
    Ph.M. Whitman. Free lattices (II). Ann. of Math., 43(2):104–115, 1942.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Georg Struth
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations