Advertisement

An energy minimization method for matching and comparing structured object representations

  • Robert Azencott
  • Laurent Younes
Structural Models
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1223)

Abstract

We present a general method for matching segmented parts of objects by energy minimization. The energy is designed in order to cope with possible imperfections of the compared segmentations (merged, or missing regions), and relies on the comparison of shape and positional descriptors. The minimization of the energy is performed by a simulated annealing procedure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Azencott (1987): Image analysis and Markov random fields. Proc. of the int. Conf. on Ind. and Appl. Math. SIAM, Paris.Google Scholar
  2. 2.
    J. Ben-Arie and A. Z. Meiri (1987): 3D Object recognition by optimal search of multinary relation graphs Comp. Vis. Graph. Im. Proc. 37, 345–361Google Scholar
  3. 3.
    R. Bergerin and M. Levine (1993): Generic object recognition: building and matching coarse descriptions from line drawings IEEE Trans. Pat. Anal. Mach. Intel. Vol. 15, no 1, 19–36Google Scholar
  4. 4.
    O. Catoni (1990) Rough Large deviation estimates for simulated annealing. Application to exponential cooling schedules Ann. of Proba., 20, 1109–1146Google Scholar
  5. 5.
    W. E. L. Grimson and D. P. Huttenlocher (1991): On the verification of hypothetized matches in model-based recognition IEEE Trans. Pat. Anal. Mach. Intel.Vol 13, no 12, 1201–1213Google Scholar
  6. 6.
    A. R. Pope (1994): Model-based object recognition A survey of recent research Tech. Report 94-04Google Scholar
  7. 7.
    E. Rivlin, S. J. Dickinson, A. Rosenfeld (1994) Recognition by functional parts. (preprint Center for automation research).Google Scholar
  8. 8.
    L. G. Shapiro (1980) A structural model of shape IEEE Trans. Pat. Anal. Mach. Intel. vol 2 no 2 111–126Google Scholar
  9. 9.
    L. G. Shapiro and R. M. Haralik (1981): Structural description and inexact matching IEEE Trans. Pat. Anal. Mach. Intel. vol 3, no 5, 504–519Google Scholar
  10. 10.
    L. G. Shapiro and R. M. Haralik (1985): A metric for comparing relational descriptors IEEE Trans. Pat. Anal. Mach. Intel. vol 7 no 1 90–98Google Scholar
  11. 11.
    N. Ueda and S. Suzuki (1993): Learning visual models from shape contours using multi-scale convex/concave structure matching IEEE Trans. Pat. Anal. Mach. Intel. vol 15 no 4 337–351Google Scholar
  12. 12.
    B. Yang, W. E. Snyder and G. L. Bilbro (1989): Matching over-segmented 3D images to models using association graphs Image and vision comp. Vol 7 no 2 135–143Google Scholar
  13. 13.
    L. Younes (1996): Computable elastic distances between shapes (preprint).Google Scholar
  14. 14.
    S. Zhang, G. D. Sullivan, K. D. Baker (1993): The automatic construction of a view independent relational model for 3-D object recognition IEEE Trans. Pat. Anal. Mach. Intel. Vol 15 no 6 531–544Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Robert Azencott
    • 1
    • 2
  • Laurent Younes
    • 1
    • 2
  1. 1.Sudimage Research Laboratory and CMLA, ENSCachan
  2. 2.CNRS URA 1611Cachan CedexFrance

Personalised recommendations