Advertisement

Identification of systems using radial basis networks feedbacked with FIR filters

  • Luciano Boquete
  • Rafael Barea
  • Ricardo García
  • Manuel Mazo
  • J. A. Bernad
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1226)

Abstract

A new model of a radial basis neural network is presented in this article which is fedbacked with a FIR filter. Using various neurons of this type, it is possible to construct a recurrent neural network, where the coefficients of each filter and the synaptic connections are adjusted to minimize an error function. The simulations carried out show the validity of this method for identifying systems with memory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.G. Barto: Connectionist Learning for Control: An Overview. COINS Technical Report 89-89 (1989)Google Scholar
  2. 2.
    K.S. Narendra, K. Parthasarathy: Identification and control of dynamic systems using neural networks. IEEE Transactions on Neural Networks, Vol. 1, N∘ 1, 4–27 (1991)Google Scholar
  3. 3.
    E. S. Chng, S. Chen and B. Mulgrew: Improving the Radial Basis Function Networks for Homogeneous Nonstationary Time Series Prediction. European Signal Processing Conference VII 94 Edinburgh, 1819–1822 (1994)Google Scholar
  4. 4.
    I. B. Ciocoiu: Radial Basis Function Networks with FIR/IIR Synapses. Neural processing Letters 3, 17–22 (1996)Google Scholar
  5. 5.
    P.S. Sastry, G. Santharam, K.P. Unnikrishnan: Memory Neuron Networks for Identification and Control of Dynamical systems. IEEE Transactions on Neural Networks, Vol. 5, N∘ 2 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Luciano Boquete
    • 1
  • Rafael Barea
    • 1
  • Ricardo García
    • 1
  • Manuel Mazo
    • 1
  • J. A. Bernad
    • 1
  1. 1.Departamento de ElectrónicaUniversidad de AlcaláSpain

Personalised recommendations