On applying genetic algorithms to an intelligent sliding-mode control system training

  • M. Cistelecan
Poster Abstracts
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1226)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cistelecan, R.M. (1995). A Neural — Sliding Mode Controller. Preprints Intelligent Manufacturing Systems. Proceedings of IMS'95, 3rd IFAC/IFIP/IFORS Workshop, Bucharest, Vol. 2, pp. 483–488.Google Scholar
  2. Cistelecan R.M., Trifa, V. (1996a). On Integrating Sliding-Mode, Neural and Fuzzy Control Concepts. Proceedings of EUFIT'96, 1010–1014.Google Scholar
  3. Cistelecan R.M., Trifa, V. (1996b). A Neural Sliding-Mode Controller with Enhanced Input Space for An Inverted Pendulum via A Gear Train. Proceedings of PEMC'96, Vol. 3, pp. 177–181.Google Scholar
  4. Davis, L. Handbook of Genetic Algorithms. International Thomson Computer Press, 1996.Google Scholar
  5. Fukuda, T. and Shibata, T. (1992). Theory and Applications of Neural Networks for Industrial Control Systems. IEEE Trans. on Industrial Electronics, Vol. 39, No. 6, pp. 472–487.Google Scholar
  6. Hung, J., et. al., (1993). Variable Structure Control A Survey. IEEE Trans. on Industrial Electronics, no. I Vol. 40, pp. 2–22.Google Scholar
  7. Markham, K. (1996). Tuning Fuzzy Logic Systems for Crane Control. Proceedings EUFIT'96, 1070–1074.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • M. Cistelecan
    • 1
  1. 1.Dept. of AutomationTechnical University of Cluj-NapocaCluj-NapocaRomania

Personalised recommendations