Accepting array grammars with control mechanisms

  • Henning Fernau
  • Rudolf Freund
1. Regulated Rewriting
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1218)


We consider (n-dimensional) array grammars in the accepting mode with various control mechanisms and compare these families of array grammars with the corresponding families obtained by array grammars in the generating mode.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Bordihn and H. Fernau, Accepting regulated grammars, IJCM 53 (1994), pp. 1–18.Google Scholar
  2. 2.
    H. Bordihn and H. Fernau, Accepting grammars and systems, JALC 1 (2) (1996). A short version appeared in: J. Dassow, G. Rozenberg, and A. Salomaa (eds.), Developments in Language Theory II (World Scientific Publ., Singapore, 1996), pp. 199–208.Google Scholar
  3. 3.
    H. Bordihn and H. Fernau, Accepting pure grammars, 5th Theorietag der GI ‘Automaten und Formale Sprachen', Rauischolzhausen 1995 (Technischer Bericht 9503 of the Universität Gießen, Arbeitsgruppe Informatik, 1995), pp. 4–16.Google Scholar
  4. 4.
    E. Csuhaj-Varjù, J. Dassow, J. Kelemen, and Gh. Păun, Grammar Systems (Gordon and Breach, London, 1994).Google Scholar
  5. 5.
    C. R. Cook and P. S.-P. Wang, A Chomsky hierarchy of isotonic array grammars and languages, Computer Graphics and Image Processing 8 (1978), pp. 144–152.Google Scholar
  6. 6.
    J. Dassow and Gh. Păun, Regulated Rewriting in Formal Language Theory (Springer, Berlin, 1989).Google Scholar
  7. 7.
    J. Dassow, R. Freund, and Gh. Păun, Cooperating array grammar systems, International Journal of Pattern Recognition and Artificial Intelligence 9 (6) (1995), pp. 1029–1053.Google Scholar
  8. 8.
    H. Fernau, Membership for 1-limited ET0L languages is not decidable, J. Inform. Process. Cybernet. EIK 30 (4) (1994), pp. 191–211.Google Scholar
  9. 9.
    H. Fernau, On unconditional transfer. In: W. Penczek, and A. Szałłas (eds.), Proceedings MFCS'96, LNCS 1113 (Springer, Berlin, 1996), pp. 348–359.Google Scholar
  10. 10.
    H. Fernau and R. Freund, Bounded parallelism in array grammars used for character recognition. In: P. Perner, P. Wang, and A. Rosenfeld (eds.), Proceedings SSPR'96, LNCS 1121 (Springer, Berlin, 1996), pp. 40–49.Google Scholar
  11. 11.
    R. Freund, Aspects of n-dimensional Lindenmayer systems. In: G. Rozenberg, and A. Salomaa (eds.), Developments in Language Theory (World Scientific Publ., Singapore, 1994), pp. 250–261.Google Scholar
  12. 12.
    R. Freund, One-dimensional #-sensing context-free array grammars, Technical report, Universität Magdeburg, 1994.Google Scholar
  13. 13.
    R. Freund and Gh. Păun, One-dimensional matrix array grammars, J. Inform. Process. Cybernet. EIK 29 (6) (1993), pp. 1–18.Google Scholar
  14. 14.
    R. Freund, Control mechanisms on #-context-free array grammars. In: Gh. Păun (ed.), Mathematical Aspects of Natural and Formal Languages (World Scientific Publ., Singapore, 1994), pp. 97–137.Google Scholar
  15. 15.
    D. Hauschildt and M. Jantzen, Petri net algorithms in the theory of matrix grammars, Acta Informatica 31 (1994), pp. 719–728.Google Scholar
  16. 16.
    H. Maurer, G. Rozenberg, and E. Welzl, Using string languages to describe picture languages, Information and Control 54 (1982), pp. 155–185.Google Scholar
  17. 17.
    A. Rosenfeld, Picture Languages (Academic Press, Reading, MA, 1979).Google Scholar
  18. 18.
    A. Salomaa, Formal Languages (Academic Press, Reading, MA, 1973).Google Scholar
  19. 19.
    P. S.-P. Wang, Some New Results on Isotonic Array Grammars, Information Processing Letters 10 (1980), pp. 129–131.Google Scholar
  20. 20.
    Y. Yamamoto, K. Morita, and K. Sugata, Context-sensitivity of two-dimensional regular array grammars. In: P. S.-P. Wang (ed.), Array Grammars, Patterns and Recognizers, WSP Series in Computer Science, Vol. 18 (World Scientific Publ., Singapore, 1989), pp. 17–41.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Henning Fernau
    • 1
  • Rudolf Freund
    • 2
  1. 1.Wilhelm-Schickard-Institut für InformatikUniversität TübingenTübingenGermany
  2. 2.Institut für ComputersprachenTechnische Universität WienWienAustria

Personalised recommendations