The accepting power of finite automata over groups

  • Victor Mitrana
  • Ralf Stiebe
1. Regulated Rewriting
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1218)


Some results from [2], [5], [6] are generalized for finite automata over arbitrary groups. The accepting power is smaller when abelian groups are considered, in comparison with the non-abelian groups. We prove that this is due to the commutativity. Each language accepted by a finite automaton over an abelian group is actually a unordered vector language. Finally, deterministic finite automata over groups are investigated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, Akademie-Verlag, Berlin, 1989.Google Scholar
  2. 2.
    J. Dassow, V. Mitrana, Finite automata over free generated groups, submitted, 1996.Google Scholar
  3. 3.
    S. Ginsburg, S. A. Greibach, Abstract families of languages. Memoirs Amer. Math. Soc. 87(1969), 1–32.Google Scholar
  4. 4.
    S. Ginsburg, Algebraic and automata-theoretic properties of formal languages, North-Holl., Amsterdam, Oxford, 1975.Google Scholar
  5. 5.
    S. A. Greibach, Remarks on blind and partially blind one-way multicounter machines. Th. Comp. Sci. 7(1978), 311–324.Google Scholar
  6. 6.
    O. H. Ibarra, S. K. Sahni, C. E. Kim, Finite automata with multiplication. Th. Comp. Sci., 2(1976), 271–294.Google Scholar
  7. 7.
    Gh. Păun, A new generative device: valence grammars, Rev. Roum. Math. Pures et Appl., 25, 6(1980), 911–924.Google Scholar
  8. 8.
    J. J. Rotman, An Introduction to the Theory of Groups, Springer-Verlag, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Victor Mitrana
    • 1
  • Ralf Stiebe
    • 2
  1. 1.Faculty of MathematicsUniversity of BucharestBucharestRomania
  2. 2.Faculty of Computer ScienceUniversity of MagdeburgMagdeburgGermany

Personalised recommendations