Proof nets, garbage, and computations

  • S. Guerrini
  • S. Martini
  • A. Masini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1210)


We study the problem of local and asynchronous computation in the context of multiplicative exponential linear logic (MELL) proof nets. The main novelty is in a complete set of rewriting rules for cut-elimination in presence of weakening (which requires garbage collection). The proposed reduction system is strongly normalizing and confluent.


linear logic typed lambda-calculus cut-elimination sharing graphs proof nets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ADLR94.
    Andrea Asperti, Vincent Danos, Cosimo Laneve, and Laurent Regnier. Paths in the lambda-calculus: three years of communications without understanding. In Proceedings of 9th Annual Symposium on Logic in Computer Science, pages 426–436, Paris, France, July 1994. IEEE.Google Scholar
  2. AG97.
    Andrea Asperti and Stefano Guerrini. The Optimal Implementation of Functional Programming Languages. Cambridge University Press, 1997. To appear.Google Scholar
  3. AL96.
    Andrea Asperti and Cosimo Laneve. Interaction system II: The practice of optimal reductions. Theoretical Computer Science, 159(2):191–244, 3 June 1996.Google Scholar
  4. Asp95.
    Andrea Asperti. Linear logic, comonads and optimal reductions. Fundamenta infomaticae, 22:3–22, 1995.Google Scholar
  5. Ban95.
    Richard Banach. Sequent reconstruction in LLM—A sweepline proof. Annals of Pure and Applied Logic, 73:277–295, 1995.Google Scholar
  6. GAL92.
    Georges Gonthier, Martín Abadi, and Jean-Jacques Lévy. Linear logic without boxes. In Proceedings of 7th Annual Symposium on Logic in Computer Science, pages 223–234, Santa Cruz, CA, June 1992. IEEE.Google Scholar
  7. Gir87.
    Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.Google Scholar
  8. Gir89.
    Jean-Yves Girard. Towards a geometry of interaction. Number 92 in Contemporary Mathematics, pages 69–108. AMS, 1989.Google Scholar
  9. GM96.
    Stefano Guerrini and Andrea Masini. Parsing MELL proof nets. Technical report, Dipartimento di Informatica, Pisa, 1996.Google Scholar
  10. GMM96.
    Stefano Guerrini, Simone Martini, and Andrea Masini. Coherence for sharing proof-nets. In Harald Ganzinger, editor, RTA '96, number 1103 in LNCS, pages 215–229, New Brunswick, NJ, July 1996. Springer-Verlag.Google Scholar
  11. Gue96.
    Stefano Guerrini. Theoretical and Practical Issues of Optimal Implementations of Functional Languages. Phd thesis, Dipartimento di Informatica, Pisa, 1996. TD-3/96.Google Scholar
  12. Lam90.
    John Lamping. An algorithm for optimal lambda calculus reduction. In Proceedings of Seventeenth Annual ACM Symposyum on Principles of Programming Languages, pages 16–30, San Francisco, California, January 1990. ACM.Google Scholar
  13. Lév78.
    Jean-Jacques Lévy. Réductions Correctes et Optimales dans le lambdacalcul. PhD Thesis, Université Paris VII, 1978.Google Scholar
  14. MM95.
    S. Martini and A. Masini. On the fine structure of the exponential rule. In J.-Y. Girard, Y. Lafont, and L. Regnier, editors, Advances in Linear Logic, pages 197–210. Cambridge University Press, 1995. Proceedings of the Workshop on Linear Logic, Ithaca, New York, June 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • S. Guerrini
    • 1
  • S. Martini
    • 2
  • A. Masini
    • 3
  1. 1.IRCSUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Dipartimento di Matematica e InformaticaUniversità di UdineUdineItaly
  3. 3.Dipartimento di InformaticaUniversità di PisaPisaItaly

Personalised recommendations