Advertisement

Logical reconstruction of bi-domains

  • Antonio Bucciarelli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1210)

Abstract

We introduce a technique based on logical relations, which, given two models M and N of a simply typed lambda-calculus L, allows us to construct a model M/N whose L-theory is a superset of both Th(M) and Th(N).

Keywords

simply typed λ-calculi logical relations PCF Scott-continuous model stable model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Abramsky, R. Jagadeesan, P. Malacaria. Full abstraction for PCF (Extended Abstract). Proc. of TACS 94, Lecture Notes in Computer Science 789, 1–15, Springer, 1994.Google Scholar
  2. 2.
    G. Berry. Modèles complètement adéquats et stables des λ-calculs typés, Thèse de Doctorat d'Etat, Université Paris VII, 1979.Google Scholar
  3. 3.
    G. Berry. Stable models of typed lambda-calculi. Proc. 5th Int. Coll. on Automata, Languages and Programming, Lecture Notes in Computer Science 62, 72–89, Springer, 1978.Google Scholar
  4. 4.
    G. Berry and P.L. Curien. Sequential algorithms on concrete data structures. Theoretical Computer Science 20, 265–231, 1982.Google Scholar
  5. 5.
    A. Bucciarelli. Logical relations and λ-theories. Proc. Imperial College Theory and Formal Methods Section Workshop, to appear, 1996.Google Scholar
  6. 6.
    A. Bucciarelli, T. Ehrhard. Sequentiality and Strong Stability. Proc. 6th Int. Symp. on Logic in Computer Science, 138–145, IEEE Computer Society Press, 1991.Google Scholar
  7. 7.
    A. Bucciarelli, T. Ehrhard. Extensional embedding of a strongly stable model of PCF. Proc. 18th Int. Coll. on Automata, Languages and Programming, Lecture Notes in Computer Science 510, 35–44, Springer, 1991.Google Scholar
  8. 8.
    A. Bucciarelli, T. Ehrhard. Sequentiality in an extensional framework. Information and Computation, Volume 110, Number 2, 265–296, 1994.Google Scholar
  9. 9.
    P.L. Curien. Categorical Combinators, Sequential Algorithms and Functional Programming. Revised edition, Birkhäuser, 1993.Google Scholar
  10. 10.
    T. Ehrhard. A relative definability result for strongly stable functions and some corollaries. Submitted paper, available at http://ida.dcs.qmw.ac.uk/authors/E/EhrhardT/, 1996.Google Scholar
  11. 11.
    H. Friedman. Equality between functionals. Proc. Logic Colloquium, Lecture Notes in Mathematics 453, 22–37, Springer, 1973.Google Scholar
  12. 12.
    J.M.E. Hyland, L. Ong. On full abstraction for PCF: I, II and III. 133pp, submitted paper, 1994.Google Scholar
  13. 13.
    T. Jim, A. Meyer. Full Abstraction and the Context Lemma. Proc. Theoretical Aspects of Comp. Sci. 1991, Lecture Notes in Computer Science 526, 131–151, Springer, 1991.Google Scholar
  14. 14.
    R. Loader. Finitary PCF is not decidable. Unpublished notes, available at http://info.ox.ac.uk/loader. 1996.Google Scholar
  15. 15.
    J.C. Mitchell. Type Systems for Programming Languages Handbook of Theoretical Computer Science, Volume B, edited by J. van Leeuwen, 365–458, Elsevier, 1990.Google Scholar
  16. 16.
    P. O'Hearn, J. Riecke. Kripke Logical Relations and PCF. To appear in Information and Computation.Google Scholar
  17. 17.
    G. Plotkin. LCF considered as a programming language. Theoretical Computer Science 5, 223–256, 1977.Google Scholar
  18. 18.
    D. Scott. A type theoretic alternative to CUCH, ISWIM, OWHY. Theoretical Computer Science 121, 411–440, 1993. Manuscript circulated since 1969.Google Scholar
  19. 19.
    G. Winskel. Stable Bistructure Models of PCF. BRICS Report Series 94-13, Departement of Computer Science, University of Aarhus, Denmark, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Antonio Bucciarelli
    • 1
  1. 1.Dipartimento di Scienze dell'InformazioneUniversità di Roma “La Sapienza”Roma

Personalised recommendations