Advertisement

Interpolation technique and convergence rate estimates for finite difference method

  • Boško S. Jovanović
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1196)

Abstract

In this work we expose a methodology for establishing convergence rate estimates for finite difference schemes based on the interpolation theory of Banach spaces. As a model problem we consider Dirichlet boundary value problem for second order linear elliptic equation with variable coefficients from Sobolev spaces. Using interpolation theory we construct fractional-order convergence rate estimates which are consistent with the smoothness of data.

AMS subject classifications (1991)

65N15 46E35 46B70 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergh, J., Löfström, J.: Interpolation spaces. Springer-Verlag, Berlin-Heidelberg-New York 1976Google Scholar
  2. 2.
    Bramble, J.H. Hilbert, S.R.: Bounds for a class of linear functionals with application to Hermite interpolation. Numer. Math. 16 (1971) 362–369Google Scholar
  3. 3.
    Calderón, A.P.: Intermediate spaces and interpolation, the complex method. Studia Math. 24 (1964) 113–190Google Scholar
  4. 4.
    Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34 (1980) 441–463Google Scholar
  5. 5.
    Jovanović, B.S.: On the convergence of finite-difference schemes for parabolic equations with variable coefficients. Numer. Math. 54 (1989) 395–404Google Scholar
  6. 6.
    Jovanović, B.S.: Optimal error estimates for finite-difference schemes with variable coefficients. Z. Angew. Math. Mech. 70 (1990) 640–642Google Scholar
  7. 7.
    Jovanović, B.S.: Convergence of finite-difference schemes for parabolic equations with variable coefficients. Z. Angew. Math. Mech. 71 (1991) 647–650Google Scholar
  8. 8.
    Jovanović, B.S.: Convergence of finite-difference schemes for hyperbolic equations with variable coefficients. Z. Angew. Math. Mech. 72 (1992) 493–496Google Scholar
  9. 9.
    Jovanović, B.S.: The finite-difference method for boundary-value problems with weak solutions. Posebna izdan. Mat. Inst. 16, Belgrade 1993Google Scholar
  10. 10.
    Jovanović, B.S.: Interpolation of function spaces and the convergence rate estimates for the finite-difference schemes. In: D. Bainov and V. Covachev (eds.), 2nd Int. Coll. on Numerical Analysis held in Plovdiv 1993, VSP, Utrecht 1994, 103–112Google Scholar
  11. 11.
    Jovanović, B.S., Ivanović, L.D., Süli, E.E.: Convergence of a finite-difference scheme for second-order hyperbolic equations with variable coefficients. IMA J. Numer. Anal. 7 (1987) 39–45Google Scholar
  12. 12.
    Jovanović, B.S., Ivanović, L.D., Süli, E.E.: Convergence of finite-difference schemes for elliptic equations with variable coefficients. IMA J. Numer. Anal. 7 (1987) 301–305Google Scholar
  13. 13.
    Lazarov, R.D.: On the question of convergence of finite-difference schemes for generalized solutions of the Poisson equation. Differentsial'nye Uravneniya 17 (1981) 1287–1294 (Russian)Google Scholar
  14. 14.
    Lazarov, R.D., Makarov, V.L., Samarski, A.A.: Application of exact difference schemes for construction and investigation of difference schemes for generalized solutions. Mat. Sbornik 117 (1982) 469–480 (Russian)Google Scholar
  15. 15.
    Lazarov, R.D., Makarov, V.L., Weinelt, W.: On the convergence of difference schemes for the approximation of solutions u ε W 2m (m>0.5) of elliptic equations with mixed derivatives. Numer. Math. 44 (1984) 223–232Google Scholar
  16. 16.
    Maz'ya, V.G., Shaposhnikova, T.O.: Theory of multipliers in spaces of differentiable functions. Monographs and Studies in Mathematics 23. Pitman, Boston, Mass. 1985Google Scholar
  17. 17.
    Samarski, A.A.: Theory of difference schemes. Nauka, Moscow 1983 (Russian)Google Scholar
  18. 18.
    Schwartz, L.: Théorie des distributions. Herman, Paris 1966Google Scholar
  19. 19.
    Süli, E., Jovanović, B., Ivanović, L.: Finite difference approximations of generalized solutions. Math. Comput. 45 (1985) 319–327Google Scholar
  20. 20.
    Triebel, H.: Interpolation theory, function spaces, differential operators. Deutscher Verlag der Wissenschaften, Berlin 1978Google Scholar
  21. 21.
    Živanović, G.: Application of interpolation theory for establishing convergence rate estimates for finite difference schemes. M.Sc. Thesis, University of Belgrade 1994 (Serbian)Google Scholar
  22. 22.
    Zlotnik, A.A.: Convergence rate estimates for projection-difference schemes approximating second order hyperbolic equations Vychisl. Protsessy Sist. 8 (1991) 116–167 (Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Boško S. Jovanović
    • 1
  1. 1.Faculty of MathematicsUniversity of BelgradeBelgradeYugoslavia

Personalised recommendations