Parallel iterative solvers for banded linear systems

  • Pierluigi Amodio
  • Francesca Mazzia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1196)


A parallel implementation of the SOR iterative method is presented for the solution of block banded linear systems. The algorithm is based on the block reordering of the coefficient matrix used by the domain decomposition methods. It is proved that the obtained iteration matrix maintains the same spectral properties of the corresponding sequential method and also the same optimal parameter of relaxation.

The parallel SOR algorithm is then applied to the solution of linear systems arising from the discretization of elliptic partial differential equations in order to obtain an interesting comparison with the coloring schemes.

Key words and phrases

Parallel algorithms iterative solvers SOR iteration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, L.M., Jordan, H.F.: Is SOR color-blind? SIAM J. Sci. Statist. Comput. 7 (1986) 490–506Google Scholar
  2. 2.
    Adams, L.M., Leveque, R.J., Young, D.M.: Analysis of the SOR iteration for the 9-point Laplacian. SIAM J. Numer. Anal. 25 (1988) 1156–1180Google Scholar
  3. 3.
    Amodio, P., Brugnano, L., Politi, T.: Parallel factorizations for tridiagonal matrices. SIAM J. Numer. Anal. 30 (1993) 813–823Google Scholar
  4. 4.
    Amodio, P., Mazzia, F.: A parallel Gauss-Seidel method for block tridiagonal linear systems. SIAM J. Sci. Comput. (to appear)Google Scholar
  5. 5.
    Chan, T.F., Elman, H.C.: Fourier Analysis of iterative methods for elliptic problems. SIAM Rev. 31 (1989) 20–49Google Scholar
  6. 6.
    Evans, D.J.: Parallel S.O.R. iterative methods. Parallel Comput. 1 (1984) 3–18Google Scholar
  7. 7.
    Ortega, J.M.: Introduction to parallel and vector solution of linear systems. Plenum Press, New York, 1988Google Scholar
  8. 8.
    Patel N.R., Jordan, H.F.: A parallelized point rowwise successive over-relaxation method on a multiprocessor. Parallel Comput. 1 (1984) 207–222Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Pierluigi Amodio
    • 1
  • Francesca Mazzia
    • 1
  1. 1.Dipartimento di MatematicaUniversità di BariBariItaly

Personalised recommendations