Advertisement

Two-step P-stable methods with phase-lag of order infinity for the numerical solution of special second order initial value problems

  • P. S. Williams
  • T. E. Simos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1196)

Abstract

Two 2-step P-stable methods for the numerical solution of special second order initial value problems are developed in this paper. One is of the Numerov type and of algebraic order 4 and the other is of the Runge-Kutta type and of algebraic order 6. Each of these methods has free parameters which may be chosen so that they are P-stable and have phase-lag of order infinity. The methods are used on problems with oscillatory solutions. The results indicate that these techniques are more efficient than other well known methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Landau, L.D., Lifshitz, F.M.: Quantum Mechanics. Pergamon, New York, 1965Google Scholar
  2. 2.
    Liboff, R.L.: Introductory quantum mechanics. Addison-Wesley Publishing Company, 1980Google Scholar
  3. 3.
    Raptis, A.D., Allison, A.C.: Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14 (1978) 1–5Google Scholar
  4. 4.
    Cash, J.R., Raptis, A.D., Simos, T.E.: A sixth-order exponentially fitted method for the numerical solution of the radial Schrödinger equation. J. Comput. Phys. 91 (1990) 413–423Google Scholar
  5. 5.
    Simos, T.E.: A two-step method with phase-lag of order infinity for the numerical integration of second order periodic initial value problem. Inter. J. Comput. Math. 39 (1991) 135–140Google Scholar
  6. 6.
    Simos, T.E.: Two-step almost P-stable complete in phase methods for the numerical integration of second order periodic initial value problems. Inter. J. Comput. Math. 46 (1992) 77–85Google Scholar
  7. 7.
    Lambert, J.D., Watson, I.A.: Symmetric multistep methods for periodic initial value problems. J. Inst. Math. Applic. 18 (1976) 189–202Google Scholar
  8. 8.
    Cash, J.R.: High order P-stable formulae for the numerical integration of periodic initial value problems. Numer. Math. 37 (1981) 355–370Google Scholar
  9. 9.
    Chawla, M.M., Rao, P.S.: High accuracy methods for y″=f(x,y). IMA J. Numer. Anal. 5 (1985) 215–220Google Scholar
  10. 10.
    Hairer, E.: Uncoditionally stable methods for second order differential equations. Numer. Math. 32 (1979) 373–379Google Scholar
  11. 11.
    Coleman, J.P.: Numerical methods for y″=f(x, y) via rational approximation for the cosine. IMA J. Numer. Anal. 9 (1989) 145–165Google Scholar
  12. 12.
    Brusa, L., Nigro, L.: A one-step method for direct integration of structural dynamical equations. Int. J. Numer. Methods Engrg. 15 (1980) 685–699Google Scholar
  13. 13.
    Thomas, R.M.: Phase properties of high almost P-stable formulae. BIT 24 (1984) 225–238Google Scholar
  14. 14.
    Simos, T.E., Mousadis, G.: A two-step method for the numerical solution of the radial Schrödinger equation. Comput. Math. Appl. 29 (1995) 31–37Google Scholar
  15. 15.
    Coleman, J.P., Ixaru, L.Gr.: P-stability and exponential-fitting methods for y″=f(x,y). University of Durham, Numerical Analysis Report NA-94/05, Durham 1994Google Scholar
  16. 16.
    Kramarz, L.: Stability of colocation methods for the numerical solution of y″=f(x,y). BIT 20 (1980) 215–222Google Scholar
  17. 17.
    Simos, T.E.: New variable-step procedure for the numerical integration of the one-dimensional Schrödinger equation. J. Comput. Phys. 108 (1993) 175–179Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • P. S. Williams
    • 1
  • T. E. Simos
    • 2
  1. 1.Department CISMLondon Guildhall UniversityLondonUK
  2. 2.Laboratory of Applied Mathematics and ComputersTechnical University of CreteHaniaGreece

Personalised recommendations