Advertisement

Stabilization and experience with the partitioning method for tridiagonal systems

  • Velisar Pavlov
  • Daniela Todorova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1196)

Abstract

The partitioning algorithm which is a modification of Wang's method for tridiagonal equations is stabilized to the case of arbitrary well conditioned matrix. A realization on Parallel Virtual Machine (PVM) is presented. The parallel solution is analysed under different loads: system dimension, variable numbers of virtual machines and different kind of bandwidth local area networks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amodio, P., Brugnano, L., Politi, T.: Parallel Factorizations for tridiagonal matrices. SIAM J. Numer. Anal. 30 (1993) 813–823Google Scholar
  2. 2.
    Amodio, P., Mazzia, F.: Backward error analysis of cyclic reduction for the solution of tridiagonal systems. Mathematics of Computation 62 (1994) 601–617Google Scholar
  3. 3.
    Amodio, P., Trigiante, D.: A parallel direct method for solving initial value problems for ordinary differential equations. Applied Numerical Mathematics 11 (1993) 85–93Google Scholar
  4. 4.
    Balle, S., Hansen, P., Higham, N.: A Strassen-Type Matrix Inversion Algorithm for the Connection Machine. APPARC PaA2 Deliverable, Esprit BRA Contract # 6634; Report UNIC-93-11, UNI•C (1993)Google Scholar
  5. 5.
    Dongarra, J., Sameh, A.: On some parallel banded system solvers. Parallel Computing 1 (1984) 223–235Google Scholar
  6. 6.
    Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchenk, R., Sunderam, V.: PVM: Parallel Virtual Machine. A Users' Guide and Tutorial for Networked Parallel Computing. The MIT Press (1994)Google Scholar
  7. 7.
    Higham, D., Higham, N.: Backward error and condition of structured linear systems. SIAM J. Matrix Anal. Appl. 13 (1992) 162–175Google Scholar
  8. 8.
    Golub, G., Van Loan, C.: Matrix Computations. The John Hopkins University Press (1989)Google Scholar
  9. 9.
    Hansen, P., Yalamov, P.: Stabilization by Perturbation of a 4n2 Toeplitz Solver. Preprint N25, Technical University of Rousse (1995)Google Scholar
  10. 10.
    Stone, H.: An efficient parallel algorithm for the solution of a tridiagonal linear system of equations. J. Assoc. Comput. Mach. 20 (1973) 27–38Google Scholar
  11. 11.
    Stone, H.: Parallel tridiagonal solvers. ACM Trans. Math. Software 1 (1975) 289–307Google Scholar
  12. 12.
    Van Der Vorst, H.: Large tridiagonal and block tridiagonal linear systems on vector and parallel computers. Parallel Comput. 5 (1987) 45–54Google Scholar
  13. 13.
    Wang, H.: A parallel method for tridiagonal equations. ACM Trans. Math. Software 7 (1981) 303–311Google Scholar
  14. 14.
    Yalamov, P.: On the Stability of the Cyclic Reduction without Back Substitution for Tridiagonal Systems. BIT 34 (1994) 428–447Google Scholar
  15. 15.
    Yalamov, P.: Stability of a partitioning algorithm for bidiagonal systems. (submitted to SIAM J. Matrix Anal. Appl.)Google Scholar
  16. 16.
    Yalamov, P.: Convergence of the Iterative Refinement Procedure Applied to Stabilization of a Fast Toeplitz Solver. Preprint N26, Technical University of Rousse (1995)Google Scholar
  17. 17.
    Yalamov, P., Pavlov, V.: Stability of the Block Cyclic Reduction. Linear Algebra and Its Applications (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Velisar Pavlov
    • 1
  • Daniela Todorova
    • 1
  1. 1.Center of Applied Mathematics and InformaticsUniversity of RousseRousseBulgaria

Personalised recommendations