Clique and anticlique partitions of graphs

  • Krzysztof Bryś
  • Zbigniew Lonc
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1197)


In the paper we prove that, for a fixed k, the problem of deciding whether a graph admits a partition of its vertex set into k-element cliques or anticliques (i.e. independent sets) is polynomial.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Alon: A note on the decomposition of graphs into isomorphic matchings, Acta Math. Acad. Sci. Hung. 42 (1983), 221–223.Google Scholar
  2. 2.
    E. Cohen, M. Tarsi: NP-completeness of graph decomposition problem, Journal of Complexity 7 (1991), 200–212.Google Scholar
  3. 3.
    M.R. Garey, D.S. Johnson, Computers and Intractability. A guide to the Theory of NP-Completeness, Freeman, San Francisco 1979.Google Scholar
  4. 4.
    O. Favaron, Z. Lonc, M. Truszczyński: Decomposition of graphs into graphs with three edges, Ars Combinatoria 20 (1985), 125–146.Google Scholar
  5. 5.
    Z. Lonc, Delta-system decompositions of graphs, to appear in Discrete Applied Mathematics.Google Scholar
  6. 6.
    Z. Lonc, On complexity of some chain and antichain partition problem, in Graph-Theoretic Concepts in Computer Science (ed. G. Schmidt and R. Berghammer), Lecture Notes in Computer Science 570, Springer-Verlag 1992, 97–104.Google Scholar
  7. 7.
    Z. Lonc and M. Truszczyński, Decomposition of large uniform hypergraphs, Order 1 (1985) 345–350.Google Scholar
  8. 8.
    R.H. Möhring, Problem 9.10, in Graphs and Order (ed. I. Rival), Reidel Publishing Co., Dordrecht 1985, 583.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Krzysztof Bryś
    • 1
  • Zbigniew Lonc
    • 1
  1. 1.Institute of MathematicsWarsaw University of TechnologyWarsawPoland

Personalised recommendations