On κ-partitioning the n-cube

  • Sergej L. Bezrukov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1197)


Let an edge cut partition the vertex set of the n-cube into κ subsets A1,..., A k with ∥Ai¦ — ¦Aj∥ ⩽ 1. We consider the problem to determine minimal size of such a cut and present its asymptotic as n, k → ∞ and also as n → ∞ and k is a constant of the form κ=2a±2b with ab≥0.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chung P.R.K., Yao S.-T.: A Near Optimal Algorithm for Edge Separators. In: Proc. 26th Symp. Theory of Comp. ACM, 1994.Google Scholar
  2. 2.
    Schwabe E.J.: Optimality of a VLSI Decomposition Scheme for the De-Bruijn Graph. Parallel Process. Lett., 3 (1993) 261–265.Google Scholar
  3. 3.
    Cypher R.: Theoretical Aspects of VLSI Pin Limitations. SIAM J. Comput., 22 (1993) 356–378.Google Scholar
  4. 4.
    Diekmann R., Lüling R., Monien B., Spräner C.: Combining Helpful Sets and Parallel Simulated Annealing for the Graph-Partitioning Problem. Int. J. Parallel Algorithms and Applications, (to appear).Google Scholar
  5. 5.
    Diekmann R., Meyer D., Monien B.: Parallel Decomposition of Unstructured FEM-Meshes. In: Proc. of IRREGULAR'95, Springer LNCS 980 (1995) 199–215.Google Scholar
  6. 6.
    Gilbert J.R., Miller G.L., Teng S.-H.: Geometric Mesh Partitioning: Implementation and Experiments. In: Proc. of IPPS'95, 1995.Google Scholar
  7. 7.
    Harper L.H.: Optimal assignment of numbers to vertices. J. Soc. Ind. Appl. Math., 12 (1964) 131–135.Google Scholar
  8. 8.
    Lipton R.J., Tarjan R.E.: A Separator Theorem for Planar Graphs. SIAM J. Appl. Math., 36 (1979) 177–189.Google Scholar
  9. 9.
    Rolim J., Sýkora O., Vrt'o I.: Optimal Cutwidth and Bisection Width of 2-and 3-Dimensional Meshes. In: Proc. of WG'95, 1995.Google Scholar
  10. 10.
    Seitz C.: The Cosmic Cube. Comm ACM, 28 (1985) 22–33.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Sergej L. Bezrukov
    • 1
  1. 1.Department of Math. and Comp. Sci.University of PaderbornPaderbornGermany

Personalised recommendations