Computing the well-founded semantics for constraint extensions of datalog

  • David Toman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1191)


We present a new technique for computing the well-founded semantics for constraint extensions of Datalog. The method is based on tabulated resolution enhanced with a new refinement strategy for deriving negative conclusions. This approach leads to an efficient and terminating query evaluation algorithm that preserves the goal-oriented nature of the resolution based methods.


Logic Program Query Evaluation Constraint Class Ground Atom Datalog Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Hull, R., Vianu, V. Foundations of Databases. Addison-Wesley, 1995.Google Scholar
  2. 2.
    Beeri, C., Ramakrishnan, R. On the Power of Magic. Proc. ACM-PODS 1987, 21–37.Google Scholar
  3. 3.
    Bol, R., Degerstedt, L. Tabulated Resolution for Well Founded Semantics. Proc. ILPS 1993.Google Scholar
  4. 4.
    Chen, W., Warren, D. S. Query Evaluation under the Well Founded Semantics. Proc. ACM-PODS 1993: 168–179Google Scholar
  5. 5.
    Chen, W., Swift, T., Warren, D. S. Efficient Top-Down Computation of Queries under the Well-Founded Semantics. JLP 24(3): 161–199 (1995).Google Scholar
  6. 6.
    Freire J., Swift, T., Warren, D. S. Taking I/O Seriously: Resolution Reconsidered for Disk. Manuscript. SUNY at Stony Brook, 1996.Google Scholar
  7. 7.
    Jaffar J., Maher, M. J. Constraint Logic Programming: A Survey. J. Logic Programming 1994, 19. 20:503–581.Google Scholar
  8. 8.
    Kanellakis, P. C., Goldin, D. Constraint Programming and Database Query Languages. Proc. 2nd TACS, 1994.Google Scholar
  9. 9.
    Kanellakis, P. C., Kuper, G. M., Revesz, P.Z. Constraint Query Languages. Journal of Computer and System Sciences 51(1):26–52, 1995.Google Scholar
  10. 10.
    Kemp, D. B., Srivastava, D., Stuckey, P. J. Bottom-up evaluation and query optimization of well-founded models. Theoretical Computer Science 146 (1995) 145–184.Google Scholar
  11. 11.
    Sagonas, K., Swift, T., Warren, D. S. XDB as an Efficient Deductive Database Engine. Proc. 1994 ACM SIGMOD Intl. Conf. on Management of Data, pp. 442–453, 1994.Google Scholar
  12. 12.
    Langford, C. Some Theorems on Deducibility. Annals of Mathematics, vol. 28, 16–40, 459–471, 1927.Google Scholar
  13. 13.
    Morishita, S. An alternating fixpoint tailored to magic programs. Proc. ACM-PODS 1993: 123–134.Google Scholar
  14. 14.
    Przymusinski, T. C. Every Logic Program Has a Natural Stratification And an Iterated Least Fixed Point Model. Proc. ACM-PODS 1989: 11–21Google Scholar
  15. 15.
    Ramakrishnan, R., Srivastava, D., Sudarshan, S. CORAL: Control, relations, and logic. Proc. 18th VLDB, 238–249, 1992.Google Scholar
  16. 16.
    Ramakrishnan, R., Srivastava, D., Sudarshan, S. Controlling the Search in Bottomup evaluation Proc. JICSLP'92, 273–287, 1992.Google Scholar
  17. 17.
    Revesz, P. Z. A Closed Form Evaluation for Datalog Queries with Integer (Gap)-Order Constraints. Theoretical Computer Science, vol. 116, no. 1, 117–149, 1993.Google Scholar
  18. 18.
    Revesz, P. Safe Stratified Datalog with Integer Order Programs. In Proc. First International Conference on Constraint Programming, Montanari U., Rossi F. eds., Springer-Verlag LNCS 976, Cassis, France, September 1995.Google Scholar
  19. 19.
    Ross, K. A. A Procedural Semantics for Well Founded Negation in Logic Programs. Proc. ACM-PODS 1989: 22–33.Google Scholar
  20. 20.
    Ross, K. A. Modular Stratification and Magic Sets for Datalog Programs with Negation. Proc ACM-PODS 1990, 161–171.Google Scholar
  21. 21.
    Srivastava, D., Ramakrishnan, R., Revesz, P. Z. Constraint Objects. Proc. Intl. Workshop on Principles and Practice of Constraint Programming, 218–228, 1994.Google Scholar
  22. 22.
    Stuckey, P., Sudarshan, S. Well-Founded Ordered Search. Foundations of Software Technology and Theoretical Computer Science, 1993.Google Scholar
  23. 23.
    Stuckey, P. Negation in Constraint Logic Programming. Information and Computation, 118(1): 12–33, 1995.Google Scholar
  24. 24.
    Sudarshan S., Srivastava, D., Ramakrishnan R., Beeri, C. Extending the Well-Founded and Valid Semantics for Aggregation. Proc. ILPS'93, 590–608, 1993.Google Scholar
  25. 25.
    Swift, T., Warren, D. Analysis of SLG-WAM Evaluation of Definite Programs. Proc. 1994 International Logic Programming Symposium, 1994, 219–235.Google Scholar
  26. 26.
    Toman, D., Chomicki, J., Rogers D. S. Datalog with Integer Periodicity Constraints. Proc. 1994 International Logic Programming Symposium, 1994, 189–203.Google Scholar
  27. 27.
    Toman, D. Top-Down beats Bottom-Up for Constraint Based Extensions of Datalog. Proc. 1995 International Logic Programming Symposium, MIT Press, 1995, 98–112.Google Scholar
  28. 28.
    Ullman J. D. Principles of Database and Knowledge-base Systems, Vol. 1,2. Computer Science Systems, 1989.Google Scholar
  29. 29.
    Van Gelder, A., Ross, K. A., Schlipf, J. S. Unfounded Sets and well-founded semantics for general logic programs. Proc. ACM Symposium on Principles of Database Systems, 1988.Google Scholar
  30. 30.
    Van Gelder, A., Ross, K. A., Schlipf, J. S. The Well-Founded Semantics for General Logic Programs. JACM 38(3): 620–650 (1991).Google Scholar
  31. 31.
    van Gelder, A. The Alternating Fixpoint of Logic Programs with Negation. Proc. ACM-PODS 1989: 1–10.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • David Toman
    • 1
  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada

Personalised recommendations