Automatic visualization of two-dimensional cellular complexes

  • L. A. P. Lozada
  • C. F. X. de Mendonça
  • R. M. Rosi
  • J. Stolfi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1190)


A two-dimensional cellular complex is a partition of a surface into a finite number of elements—faces (open disks), edges (open arcs), and vertices (points). The topology of a cellular complex is the abstract incidence and adjacency relations among its elements. Here we describe a program that, given only the topology of a cellular complex, computes a geometric realization of the same—that is, a specific partition of a specific surface in three-space—guided by various aesthetic and presentational criteria.


Computer graphics visualization graph drawing solid modeling minimum-energy surfaces computational topology 


  1. 1.
    Chandrajit L. Bajaj. Smoothing polyhedra using implicit algebraic splines. In Proc. SIGGRAPH'92, pages 79–88, 1992.Google Scholar
  2. 2.
    Bruce G. Baumgart. A polyhedron representation for computer vision. In Proc. 1975 AFIPS National Computer Conference, volume 44, pages 589–596, 1975.Google Scholar
  3. 3.
    Walter Baur and Volker Strassen. The complexity of partial derivatives. Theoretical Computer Science, 22:317–330, 1983.CrossRefGoogle Scholar
  4. 4.
    Kenneth A. Brakke. The Surface Envolver. Experimental Mathematics, 1(2):141–165, 1992.Google Scholar
  5. 5.
    Kenneth A. Brakke. Surface Evolver Manual. The Geometry Center, University of Minnesota, December 1993. Eletronic Address: Scholar
  6. 6.
    Erik Brisson. Representing geometric structures in d dimensions: Topology and order. Proc. 5th Annual ACM Symp. on Computational Geometry, pages 218–227, June 1989.Google Scholar
  7. 7.
    Ron Davidson and David Harel. Drawing graphs nicely using simulated annealing. Technical report, Department of Applied Mathematics and Computer Science, The Weizmann Institute of Science, 1989.Google Scholar
  8. 8.
    G. Di Battista, P. D. Eades, and R. Tamassia. Algorithms for drawing graphs: An annotated bibliography. Technical report, Department of Computer Science, University of Newcastle, 1993.Google Scholar
  9. 9.
    David P. Dobkin and Michel J. Laszlo. Primitives for the manipulations of three-dimensional subdivisions. Proc. 3rd ACM Symp. on Comp. Geometry, pages 86–99, June 1987.Google Scholar
  10. 10.
    H. Ferguson, A. Rockwood, and J. Cox. Topological design of sculpted surfaces. In Proc. SIGGRAPH'92, pages 149–156, 1992.Google Scholar
  11. 11.
    James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer Graphics: Principles and Practice. Addison-Wesley, second edition, 1990.Google Scholar
  12. 12.
    Leonidas Guibas and Jorge Stolfi. Primitives for the manipulations of general subdivisions and the computation of Voronoi diagrams. ACM Transactions on Graphics, 4(2):74–123, April 1985.CrossRefGoogle Scholar
  13. 13.
    B. K. P. Horn. The curve of least energy. ACM Transactions on Mathematical Software, 9(4):441–460, December 1983.CrossRefGoogle Scholar
  14. 14.
    Lucas Hsu, Rob Kusner, and John Sullivan. Minimizing the squared mean curvature integral for surfaces in space forms. Experimental Mathematics, 1(3):191–207, 1992.Google Scholar
  15. 15.
    Michael Kallay and Bahram Ravani. Optimal twist vectors as a tool for interpolation a network of curves with a minimum energy surface. Computer Aided Geometric Design, pages 465–473, 1990.Google Scholar
  16. 16.
    Tomihisa Kamada and Satoru Kawai. An algorithm for drawing general undirected graphs. Information Processing Letters, pages 7–15, April 1989.Google Scholar
  17. 17.
    S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simulated annealing. Science, 220:671–680, 1983.Google Scholar
  18. 18.
    Pascal Lienhardt. Subdivisions of N-dimensional spaces and N-dimensional generalized maps. Proc. 5th Annual ACM Symp. on Computational Geometry, pages 228–236, June 1989.Google Scholar
  19. 19.
    Charles Loop and Tony DeRose. Generalized B-spline surface of arbitrary topology. In Proc. SIGGRAPH'90, pages 347–356, August 1990.Google Scholar
  20. 20.
    Cândido X. F. Mendonça and Peter Eades. Learning aesthetics for visualization. In Anais do XX Seminário Integrado de Software e Hardware, pages 76–88, Florianópolis, SC (Brazil), 1993.Google Scholar
  21. 21.
    Henry P. Moreton and Carlo H. Séquin. Functional optimization for fair surface design. In Proc. SIGGRAPH'92, pages 167–176, 1992.Google Scholar
  22. 22.
    D. B. Parkinson and D. N. Moreton. Optimal biarc-curve fitting. Computer-Aided Design, 23(6):411–419, 1991.CrossRefGoogle Scholar
  23. 23.
    William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, 1986.Google Scholar
  24. 24.
    Rober Marcone Rosi and Jorge Stolfi. Automatic visualization of two-dimensional cellular complexes. Technical Report IC-96-02, Institute of Computing, University of Campinas, May 1996.Google Scholar
  25. 25.
    Fujio Yamaguchi and Toshiya Tokieda. A solid modelling system: Freedom-II. Computers & Graphics, pages 225–232, 1983.Google Scholar
  26. 26.
    C. Young, D. K. Buck, and A. C. Collins. POV-Ray - Persistence of Vision Raytracer, version 2.0. 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • L. A. P. Lozada
    • 1
  • C. F. X. de Mendonça
    • 1
  • R. M. Rosi
    • 1
  • J. Stolfi
    • 1
  1. 1.Institute of Computing, UnicampUSA

Personalised recommendations