Advertisement

Calculating digital counters

  • Walter Dosch
Invited Talks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1181)

Abstract

Deductive design characterizes a method where a system description is deduced from the functional specification of its behaviour applying formal transformations rules. Following this design methodology, we derive circuit descriptions for various combinational and sequential counters from a common functional specification using equational and inductive reasoning.

Keywords

digital counters deductive design formal hardware description 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.L. Bauer, B. Möller, H. Partsch, P. Pepper: Formal Program Construction by Transformations — Computer-Aided, Intuition Guided Programming. IEEE Transactions on Software Engineering 15:2, 165–180 (1989)Google Scholar
  2. 2.
    K. van Berkel: VLSI Programming of a Modulo-N Counter with Constant Response Time and Constant Power. In: S. Furber, M. Edwards: Asynchronous Design Methodologies. IFIP Transaction A-28. Amsterdam: Elsevier 1993, 1–11Google Scholar
  3. 3.
    R.T. Boute: Representational and Denotational Semantics of Digital Circuits. IEEE Transactions on Computers 38:7, 986–999Google Scholar
  4. 4.
    J.J.F. Cavanagh: Digital Computer Arithmetic — Design and Implementation. McGraw-Hill Computer Science Series. New York: McGraw-Hill 1984Google Scholar
  5. 5.
    L. Claesen (ed.): Formal VLSI Specification and Synthesis — VLSI Design Methods-I & Formal VLSI Correctness Verification — VLSI Design Methods-II. Amsterdam: Elsevier 1990Google Scholar
  6. 6.
    C. Delgado Kloos, W. Dosch: Transformational Development of Circuit Descriptions for Binary Adders. In: M. Broy, M. Wirsing (eds.): Methods of Programming — Selected Papers on the CIP-Project. Lecture Notes in Computer Science 544. Berlin: Springer 1991, 217–237Google Scholar
  7. 7.
    C. Delgado Kloos, W. Dosch: Efficient Circuits as Implementations of Non-Strict Functions. Workshops in Computing Series. In: G. Jones, M. Sheeran (eds.): Designing Correct Circuits. London: Springer 1991, 212–230Google Scholar
  8. 8.
    C. Delgado Kloos, W. Dosch, B. Möller: Design and Proof of Multipliers by Correctness-Preserving Transformation. In: P. Dewilde, J. Vandewalle (eds.): Computer Systems and Software Engineering. Proc. 6th Annual European Computer Conference (CompEuro 92). Los Alamitos, Ca.: IEEE Computer Society Press 1992, 238–243Google Scholar
  9. 9.
    M.D. Ercegovac, T. Lang: Digital Systems and Hardware/Firmware Algorithms. New York: John Wiley & Sons 1985Google Scholar
  10. 10.
    F.K. Hanna, N. Daeche, M. Longley: Specification and Verification Using Dependent Types. IEEE Transactions on Software Engineering 16:9, 949–964 (1990)Google Scholar
  11. 11.
    G. Jones, M. Sheeran: Designing Arithmetic Circuits by Refinement in Ruby. Science of Computer Programming 22:1–2, 107–135 (1994)Google Scholar
  12. 12.
    J.L.W. Kessels:Calculational Derivation of a Counter with Bounded Response Time. In: G.J. Milne, L. Pierre (eds): Correct Hardware Design and Verification Methods. Lecture Notes in Computer Science 683. Berlin: Springer 1993, 203–213Google Scholar
  13. 13.
    M.M. Mano: Digital Design. Englewood Cliffs, N.J.: Prentice Hall 1984Google Scholar
  14. 14.
    C. Mead, L. Conway: Introduction to VLSI Systems. Reading, Mass: Addison-Wesley 1980Google Scholar
  15. 15.
    J.T. O'Donnell: Hardware Description With Recursion Equations. Proc. IFIP 8th International Symposium on Computer Hardware Description Languages and their Applications. Amsterdam: North-Holland 1987, 363–382Google Scholar
  16. 16.
    A.R. Omondi: Computer Arithmetic Systems — Algorithms, Architecture and Implementations. Prentice Hall International Series in Computer Science. New York: Prentice Hall 1994Google Scholar
  17. 17.
    H. Partsch: Specification and Transformation of Programs — A Formal Approach to Software Development. Berlin: Springer 1990Google Scholar
  18. 18.
    N.R. Scott: Computer Number Systems and Arithmetic. Englewood Cliffs, N.J.: Prentice Hall 1985Google Scholar
  19. 19.
    J. Staunstrup: A Formal Approach to Hardware Design. The Kluwer International Series in Engineering and Computer Science. Boston: Kluwer 1994Google Scholar
  20. 20.
    N. Wirth: Digital Circuit Design for Computer Science Students — An Introductory Textbook. Berlin: Springer 1995Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Walter Dosch
    • 1
  1. 1.Institut für InformatikUniversität AugsburgAugsburg

Personalised recommendations