Weak bisimulation and model checking for Basic Parallel Processes

  • Richard Mayr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1180)


Basic Parallel Processes (BPP) are a natural subclass of CCS infinite-state processes. They are also equivalent to a special class of Petri nets. We show that unlike for general Petri nets, it is decidable if a BPP and a finite-state system are weakly bisimilar. To the best of our knowledge, this is the first decidability result for weak bisimulation and a non-trivial class of infinite-state systems. We also show that the model checking problem for BPPs and the branching time logic UB is PSPACE-complete. This settles a conjecture of [4].


Basic Parallel Processes bisimulation model checking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Christensen. Decidability and Decomposition in Process Algebras. PhD thesis, Edinburgh University, 1993.Google Scholar
  2. 2.
    S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation equivalence is decidable for basic parallel processes. In E. Best, editor, Proceedings of CONCUR 93, number 715 in LNCS. Springer Verlag, 1993.Google Scholar
  3. 3.
    S. Christensen, H. Hüttel, and C. Stirling. Bisimulation equivelence is decidable for all context-free processes. In W.R. Cleaveland, editor, Proceedings of CONCUR 92, number 630 in LNCS. Springer Verlag, 1992.Google Scholar
  4. 4.
    Javier Esparza. Decidability of model checking for infinite-state concurrent systems. Acta Informatica, 1995.Google Scholar
  5. 5.
    Javier Esparza. Petri nets, commutative context-free grammars and basic parallel processes. In Horst Reichel, editor, Fundamentals of Computation Theory, number 965 in LNCS. Springer Verlag, 1995.Google Scholar
  6. 6.
    Y. Hirshfeld. Petri nets and the equivalence problem. In Proceedings of CSL'93, number 832 in LNCS, pages 165–174. Springer Verlag, 1993.Google Scholar
  7. 7.
    P. Jančar. Undecidability of bisimilarity for petri nets and some related problems. Theoretical Computer Science, 1995.Google Scholar
  8. 8.
    P. Jančar and F. Moller. Checking regular properties of petri nets. In Insup Lee and Scott A. Smolka, editors, Proceedings of CONCUR'95, number 962 in LNCS. Springer Verlag, 1995.Google Scholar
  9. 9.
    Richard Mayr. Some results on basic parallel processes. Technical Report TUM-I9616, TU-München, March 1996.Google Scholar
  10. 10.
    R. Milner. Communication and Concurrency. Prentice Hall, 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Richard Mayr
    • 1
  1. 1.Institut für InformatikTechnische UniversitÄt MünchenMünchenGermany

Personalised recommendations