Advertisement

Geometrical parameters extraction from discrete paths

  • Anne Vialard
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1176)

Abstract

We present in this paper the advantages of using the model of Euclidean paths for the geometrical analysis of a discrete curve. The Euclidean paths are a semi-continuous representation of a discrete path providing a good approximation of the underlying real curve. We describe the use of this model to obtain accurate estimations of lenght, tangent orientation and curvature.

Keywords

Discrete Paths Euclidean Paths lenght estimation curvature estimation 

References

  1. 1.
    J.P. Braquelaire and A. Vialard. Euclidean paths: a new representation of boundary of discrete regions. Technical Report 1088-95, LaBRI, UBX1, 1995. Submitted.Google Scholar
  2. 2.
    I. Debled and J.P. Reveilles. Un algorithme linéaire de polygonalisation des courbes discrètes. In Colloque Géométrie discrète en imagerie, pages 243–253, Grenoble, 1992.Google Scholar
  3. 3.
    L. Dorst and A.W. Smeulders. Lenght estimators for digitized contours. CVGIP, 40:311–333, 1987.Google Scholar
  4. 4.
    A. Vialard et J.P. Braquelaire. Transformations géométriques de courbes discrètes 2d. In 3èmes journées de l'AFIG (Marseille), 1995.Google Scholar
  5. 5.
    M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active contour models. Int. J. Comput. Vis., 4:321–331, 1987.Google Scholar
  6. 6.
    J.P. Reveilles. Géométrie discrète, Calcul en nombres entiers et algorithmique. PhD thesis, Université Louis Pasteur, Strasbourg, 1991.Google Scholar
  7. 7.
    A. Rosenfeld and A.C. Kak. Digital Picture Processing, volume 2. Academic Press, 1982.Google Scholar
  8. 8.
    B. Shahraray and D.J. Anderson. Uniform resampling of digitized contours. PAMI, 7(6):674–681, November 1985.Google Scholar
  9. 9.
    D. Terzopoulos, A. Platt, A. Barr, and K. Fleischer. Elastically deformable models. Comput. Graph., 21:205–214, 1987.Google Scholar
  10. 10.
    A. Vialard. Les chemins euclidiens: modèle et applications. PhD thesis, Université Bordeaux 1, 1996.Google Scholar
  11. 11.
    M. Worring and A. W.M. Smeulders. Digital curvature estimation. IU, 58(3):366–382, November 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Anne Vialard
    • 1
  1. 1.Laboratoire Bordelais de Recherche en Informatique - URA 1304Université Bordeaux ITalenceFrance

Personalised recommendations