Advertisement

The Quasi-Shear rotation

  • Eric Andres
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1176)

Abstract

A discrete one-to-one bitmap rotation called the Quasi Shear Rotation (QSR) is presented. This bitmap rotation is one-to-one, reversible and can have an arbitrary (non lattice) rotation center. The QSR represents so far the “best” choice of an one-to-one discrete rotation for a practical application.

References

  1. 1.
    E. Andres, “Cercles discrets et rotations discrètes”, Ph.D. thesis (in french), Université Louis Pasteur, Strasbourg (France), Dec. 1992.Google Scholar
  2. 2.
    E. Andres and C. Sibata. “Choice of Integer Part Function for Computer Graphics”, submitted to IEEE TVCG in Oct. 1995.Google Scholar
  3. 3.
    Jacob, M-A., “Transformation of Digital Images by Discrete Affine Applications”, Computer & Graphics, 19, no. 3, pp. 373–389, Aug. 1995.Google Scholar
  4. 4.
    M-A. Jacob and E. Andres, “On Discrete Rotations”, Proc. of 5th Discrete Geometry Conference in Imagery, Clermont-Ferrand (France), Sept.1995.Google Scholar
  5. 5.
    A.W. Paeth, “A fast Algorithm for General Raster Rotation”, Proc. Graphics Interface '86, pp.77–81, Vancouver (Canada) May 1986.Google Scholar
  6. 6.
    A.W. Paeth, “A fast Algorithm for General Raster Rotation”, Graphics Gems, A. Grassner ed, Boston Academic, pp. 179–195, 1990.Google Scholar
  7. 7.
    J-P. Réveillés, “Géométrie Discrète, calculs en nombres entiers et algorithmique”, State Thesis (in french), Université Louis Pasteur, Strasbourg (France).Google Scholar
  8. 8.
    A. Tanaka et al., “A rotation method for raster image using skew transformation”, Proc. IEEE Conf. Comput. Vision and Pattern Rec., pp.272–277, Jun. 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Eric Andres
    • 1
  1. 1.Radiation Medecine DepartmentRoswell Park Cancer InstituteBuffaloUSA

Personalised recommendations