Application of skeletonization algorithms for myocardial spect quantification

  • Didier Scellier
  • Jean-Yves Boire
  • Cyril Thouly
  • Jean Maublant
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1176)


Defect quantification is an important topic in myocardial SPECT. It can be achieved properly only with an automatic and reproducible processing. We propose a new approach lying on the application of discrete geometry and of two aspects of mathematical morphology, namely, skeletonization and segmentation. The properties of the skeleton are essential for carrying out segmentation, which uses many sights of uncertain's theory (fuzzy logic). We present the basis of this application with an in-depth analysis of various methods of skeletonization.

Key words

Skeleton fuzzy logic segmentation scintigraphy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Helias J, Itti R, Pezard Ph, Coeur et isotopes. Médicorama, Numéro spécial. 1988.Google Scholar
  2. [2]
    Cauvin JC, Boire JY, Maublant J., et al. Automatic detection of the left ventricular myocardium long axis and center in thallium-201 single photon emission computed tomography. Eur. J. Nucl. Med. Vol. 19, N∘12, December 1992: pp 1032–1037.Google Scholar
  3. [3]
    Cauvin JC, Boire JY, Maublant J, et al. Automatic quantification of myocardial defects by morphological methods in SPECT. Proceedings of the 12th annual international conference of the IEEE Engineering in Medicine an Biology Society. Philadelphia, PA, 1990: 415–416.Google Scholar
  4. [4]
    Rosenfeld A, Three-dimensional digital topology. Tech. Rpt. 936, Computer Science Center, University of Maryland, College Park, MD 20742, September.Google Scholar
  5. [5]
    Chassery JM, Montanvert A, Géométrie discrète en analyse d'images. Traité des nouvelles technologies serie — Images, Hermes, 1991.Google Scholar
  6. [6]
    Boire JY, Cauvin JC, Maublant J, et al. Segmentation methods for automatic kidneys volume quantification in SPECT. Proceedings of the 12th annual international conference of the IEEE Engineering in Medicine an Biology Society. Philadelphia, PA, 1990: 421–422.Google Scholar
  7. [7]
    Faurous P., Fillard JP, Artus A., A new approach to fuzzy partition for image segmentation. International Protocol Conference of the IEEE Enginering in Medecine and Biology Society, Vol. 14, Part 5 to 7, pp 1922–1923, Paris, oct–nov 1992.Google Scholar
  8. [8]
    Fernandez-Vidal S, Malandain G, Squelettes euclidiens d'objets discrets n-Dimensionnels Rapport de Recherche INRIA N∘2771, Janvier 1996.Google Scholar
  9. [9]
    Bertrand G., Simple points, topological numbers and geodesic neighborhoods in cubic grids Pattern Recognition letters 15, pp 1003–1011, 1994.Google Scholar
  10. [10]
    Bertrand G, P-simple points: a solution for parallel thinning. Actes du 5ième Colloque DGCI, pp 233–242, sept 1995Google Scholar
  11. [11]
    Sheehan F.H., Bolson E.L., Dodge H.T., Detlef G., Schofer J., Woo H., Advantages and applications of the center line method for characterizing regional ventricular function. Circulation 74, N∘2, 293–305, 1986.Google Scholar
  12. [12]
    D. Attali and A. Montanvert: Semi-continuous skeletons of 2D and 3D shapes. In C. Arcelli et al editors, Aspects of Visual form Processing, page 32–41. World Scientific, Singapore 1994Google Scholar
  13. [13]
    D. Attali and A. Montanvert: Computing and symplifying 2D and 3D semi-continuous skeletons. CVGIP: Image understanding, 1995Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Didier Scellier
    • 1
  • Jean-Yves Boire
    • 1
  • Cyril Thouly
    • 2
  • Jean Maublant
    • 2
  1. 1.ERIMClermont-Ferrand, cedexFrance
  2. 2.Médecine NucléaireCentre Jean PerrinClermont-FerrandFrance

Personalised recommendations