A topologically consistent representation for image analysis: The Frontiers Topological Graph

  • Christophe Fiorio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1176)


In this paper a “topologically consistent” representation for images is presented. It is called the Frontiers Topological Graph and is derived from the combinatorial maps model. Thus it establishes a link between image analysis and image synthesis. An efficient algorithm which constructs the Frontiers Topological Graph is developed.


image representation topology combinatorial map graph 


  1. [AAF95]
    Ehoud Ahronovitz, Jean-Pierre Aubert, and Christophe Fiorio. The startopology: a topology for image analysis. In 5th Discrete Geometry for Computer Imagery, Proceedings, pages 107–116. Groupe GDR PRC/AMI du CNRS, September 1995.Google Scholar
  2. [BDFL92]
    Y. Bertrand, J.-F. Dufourd, J. Françon, and P. Lienhardt. Modélisation volumique à base topologique. Rapport de recherche 92/16, Université Louis Pasteur, Centre de Recherche en Informatique, 7, rue René Descartes, 67094 Strasbourg, France, 1992.Google Scholar
  3. [Ced79]
    Roger L. T. Cederberg. Chain-link coding and segmentation for raster scan devices. Computer Graphics and Image Process., 10:224–234, 1979.Google Scholar
  4. [Cha95]
    Philippe Charnier. Outils algorithmiques pour le codage interpixel et ses applications. Thèse de doctorat, Université Montpellier II, Janvier 1995.Google Scholar
  5. [Cor75]
    Robert Cori. Un code pour les graphes planaires et ses applications, volume 27. Astérisque, SMF, Paris, France, 1975.Google Scholar
  6. [Duf91]
    Jean-François Dufourd. Formal specification of topological subdivisions using hypermaps. Computer-Aided Design, 23(2):99–116, 3 1991.Google Scholar
  7. [Edm60]
    J. Edmonds. A combinatorial representation for polyhedral surfaces. Notices of the American Mathematical Society, 7, 1960.Google Scholar
  8. [FG96]
    Christophe Fiorio and Jens Gustedt. Two linear time Union-Find strategies for image processing. Theoretical Computer Science, 154:165–181, 1996.Google Scholar
  9. [Fio95]
    Christophe Fiorio. Approche interpixel en analyse d'images: une topologie et des algorithmes de segmentation. Thèse de doctorat, Université Montpellier II, 24 novembre 1995.Google Scholar
  10. [Fre61]
    H. Freeman. On the encoding of arbitrary geometric configurations. IEEE trans. Elec. Computers, 10, 1961.Google Scholar
  11. [GHPT89]
    Michel Gangnet, Jean-Claude Hervé, Thierry Pudet, and Jean-Manuel Van Thong. Incremental computation of planar maps. report 1, Digital PRL, 5 1989.Google Scholar
  12. [Jac70]
    A. Jacques. Constellations et graphes topologiques. In Combinatorial Theory and Applications, pages 657–673, Budapest, 1970.Google Scholar
  13. [KKM90a]
    Efim Khalimsky, Ralph Kopperman, and Paul R. Meyer. Boundaries in digital planes. J. of Applied Mathematics and Stochastic Analysis, 3(1):27–55, 1990.Google Scholar
  14. [KKM90b]
    Efim Khalimsky, Ralph Kopperman, and Paul R. Meyer. Computer graphics and connected topologies on finite ordered sets. Topology and its Applications, 36:1–17, 1990.Google Scholar
  15. [KM95]
    Walter G. Kropatsch and Herwig Macho. Finding the structure of connected components using dual irregular pyramids. In 5th Discrete Geometry for Computer Imagery, Proceedings, pages 147–158, invited lecture. Groupe GDR PRC/AMI du CNRS, September 1995.Google Scholar
  16. [Kov89]
    V.A. Kovalevsky. Finite topology as applied to image analysis. Computer Vision, Graphics, and Image Processing., 46:141–161, 1989.Google Scholar
  17. [Kro94]
    Walter G. Kropatsch. Building irregular pyramids by dual graph contraction. Technical Report PRIP-TR-35, Dept. for Pattern Recognition and Image Processing, Institute for Automation, Technical Univerity of Vienna, July 1994.Google Scholar
  18. [Lie89]
    P. Lienhardt. Subdivision of n-dimensional spaces and n-dimensional generalized maps. In 5th ACM Conf. Comput. Geometry, pages 228–236, Saarbrücken, Germany, 1989.Google Scholar
  19. [Lie91]
    P. Lienhardt. Topological models for boundary representation: A survey. Comput. Aided Design, 23(1):59–81, 1991.Google Scholar
  20. [MMR91]
    Annick Montanvert, Peter Meer, and Azriel Rosenfeld. Hierarchichal image analysis using irregular tessalations. IEEE trans. Pattern Analysis and Machine Intelligence, 13(4):307–316, April 1991.Google Scholar
  21. [Pav77]
    Theo Pavlidis. Structural Pattern Recognition. Springer-Verlag, New York, 1977.Google Scholar
  22. [Ros74]
    Azriel Rosenfeld. Adjacency in digital pictures. Inform. and Control, 26:24–33, 1974.Google Scholar
  23. [Vos92]
    George Vosselman. Relational Matching. Lecture Notes in Computer Science. Springer-Verlag, Berlin Heidelberg Germany, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Christophe Fiorio
    • 1
  1. 1.TU BerlinBerlinGermany

Personalised recommendations