Advertisement

Finite element meshes by means of voxels

  • Pascal J. Frey
  • Houman Borouchaki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1176)

Abstract

A number of techniques have been developed for the polygonization of implicit surfaces or isosurfaces. Two approaches for generating polyhedral approximations of implicit models are presented. The first method produces finite element meshes. The second algorithm is based on a P1 (linear) surface approximation from volumetric datasets. Applications examples of discrete constructive solid geometry objects are given.

Key-words

Implicit models Surface reconstruction Polygonization Finite element mesh Voxel Texel 

References

  1. 1.
    C. Bajaj, I. Ihm and J. Warren, Higher-order interpolation and least-squares approximation using implicit algebraic surfaces, ACM Trans. Graph., vol 12, pp. 327–347, 1993.Google Scholar
  2. 2.
    J. Bloomenthal, Polygonization of implicit surfaces, CAGD, vol 5, pp. 341–355, 1988.Google Scholar
  3. 3.
    H. Borouchaki, Triangulation sous contraintes en dimension quelconque, Rapport de Recherche INRIA, RR-2373, 1994.Google Scholar
  4. 4.
    B.K. Choi, H.Y. Shin and J.W. Lee, Triangulation of scattered data in 3D space, CAD, vol 20, no 5, pp. 239–248, 1988.Google Scholar
  5. 5.
    M.J. Dürst, Letters: additional reference to “Marching Cubes”, ACM Comp. Graphics, vol 22, no 4, pp. 72–73. 1988.Google Scholar
  6. 6.
    P.J. Frey, B. Sarter and M. Gautherie, Fully automatic mesh generation for 3D domains based upon voxel sets, Int. J. Numer. Meth. Engng., vol 37, pp. 2735–2753, 1994.Google Scholar
  7. 7.
    P.J. Frey and H. Borouchaki, Geometric evaluation of finite element surface meshes, submitted to Comput. Aided Geom. Design Google Scholar
  8. 8.
    P.J. Frey and H. Borouchaki, Texel meshing, to appear.Google Scholar
  9. 9.
    C. M. Hoffmann, Implicit curves and surfaces in CAGD, IEEE Comp. Graphics Appl., vol 13, pp. 79–88, 1993.Google Scholar
  10. 10.
    H. Hoppe, Surface reconstruction from unorganized points, Phd thesis, Univ. of Washington, 1994.Google Scholar
  11. 11.
    W.E. Lorensen and H.E. Cline, Marching cubes: a high-resolution 3D surface construction algorithm, Siggraph'87 Conf. Proc., Comp. Graphics, vol 21, no 4, pp. 163–169, 1987.Google Scholar
  12. 12.
    S.V. Matveyev, Approximation of isosurface in the Marching Cube: ambiguity problem, Visualization'94, Conf. Proc., IEEE Computer Society Press, pp. 288–292, 1994.Google Scholar
  13. 13.
    C. Montani, R. Scateni and R. Scopigno, A modified look-up table for implicit disambiguation of Marching Cubes, The Visual Computer, vol 10, 1994.Google Scholar
  14. 14.
    H. Muller and M. Stark, Adaptive generation of surfaces in volume data, The Visual Computer, vol 9, no 4, pp. 182–199, 1993.Google Scholar
  15. 15.
    The asymptotic decider: resolving the ambiguity in Marching Cubes, Visualization'91, Conf. Proc., IEEE Computer Society Press, pp. 83–90, 1991.Google Scholar
  16. 16.
    P. Ning and J. Bloomenthal, An evaluation of implicit surface tilers, IEEE Computer Graphics & Applications, vol 13, no 6, pp. 33–41, 1993.Google Scholar
  17. 17.
    A. Paski, V. Adzhiev, A. Sourin and V. Savchenko, Function representation in geometric modeling: concepts, implementation and applications, The Visual Computer, vol 11, pp. 429–446, 1995.Google Scholar
  18. 18.
    B. Payne and A. Toga, Surface mapping brain function on 3d models, IEEE Computer Graphics & Applications, 1990.Google Scholar
  19. 19.
    A.A.G. Requicha, Representations for rigid solids: theory, methods and systems, Comput. Surveys, vol 12, pp. 437–464, 1980.Google Scholar
  20. 20.
    A. Ricci, A constructive geometry for computer graphics, The Computer Journal, vol 16, pp. 157–160, 1972.Google Scholar
  21. 21.
    V.L. Rvachev, On the analytical description of some geometric objects, Report of the Ukrainian Academy of Sciences, vol 153, pp. 765–767, 1963.Google Scholar
  22. 22.
    M.F.W. Schmidt, Cutting cubes — visualizing implicit surfaces by adaptive polygonization, The Visual Computer, vol 10, pp. 101–115, 1993.Google Scholar
  23. 23.
    S. Sclaroff and A. Pentland, generalized implicit functions for computer graphics, Comput. Graph., vol 25, pp. 247–250, 1991.Google Scholar
  24. 24.
    M.S. Shephard and M.K. Georges, Automatic three-dimensional mesh generation by the finite octree technique., Int. J. Numer. Methods Eng., vol 32, pp. 709–749, 1991.Google Scholar
  25. 25.
    W.J. Schroeder, J.A. Zarge and W. Lorensen, Decimation of triangle mesh, ACM Comput. Graphics, vol 26, no 2, pp. 65–70, 1992.Google Scholar
  26. 26.
    B.T. Stander and J.C. Hart, Guaranteeing the topology of an implicit surface polygonization, to appear in Siggraph'96 Conf. Proc., Comput. Graphics, 1996.Google Scholar
  27. 27.
    G. Turk, Re-tiling polygonal surfaces, Comput. Graphics, vol 26, no 2,pp. 55–64, 1992.Google Scholar
  28. 28.
    J. Wilhelms and A. Van Gelder, Topological considerations in isosurface generation extended abstract, Comput. Graphics, vol 24, no 5, pp. 79–86, 1990.Google Scholar
  29. 29.
    G. Wyvill, C. McPheeters and B. Wyvill, Data structure for soft objects, The Visual Computer, vol 2, pp. 227–234, 1986.Google Scholar
  30. 30.
    R. Yagel, D. Cohen and A. Kaufman, Normal estimation in 3D discrete space, The Visual Computer, vol 8, pp. 278–291, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Pascal J. Frey
    • 1
  • Houman Borouchaki
    • 1
  1. 1.Gamma projectINRIALe Chesnay CedexFrance

Personalised recommendations