Skip to main content

On learning and co-learning of minimal programs

  • Conference paper
  • First Online:
Algorithmic Learning Theory (ALT 1996)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1160))

Included in the following conference series:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Information and Control, 28:125–155, 1975.

    Article  Google Scholar 

  2. M. Blum. A machine-independent theory of the complexity of recursive functions. Journal of the ACM, 14:322–336, 1967.

    Article  Google Scholar 

  3. J. Case and C. Smith. Comparison of identification criteria for machine inductive inference. Theoretical Computer Science, 25:193–220, 1983.

    Article  Google Scholar 

  4. R. Freivalds. Minimal Gödel numbers and their identification in the limit. In Proceedings of the International Conference on Mathematical Foundations of Computer Science, Marianske Lazne, pages 219–225. Springer-Verlag, 1975. Lecture Notes in Computer Science 32.

    Google Scholar 

  5. R. Freivalds. Inductive inference of minimal programs. In M. Fulk and J. Case, editors, Proceedings of the Third Annual Workshop on Computational Learning Theory, pages 3–20. Morgan Kaufmann Publishers, Inc., August 1990.

    Google Scholar 

  6. R. Freivalds. Inductive inference of recursive functions: Qualitative theory. In J. Barzdins and D. Bjorner, editors, Baltic Computer Science. Lecture Notes in Computer Science 502, pages 77–110. Springer-Verlag, 1991.

    Google Scholar 

  7. R. Freivalds and S. Jain. Kolmogorov numberings and minimal identification. In Paul Vitanyi, editor, Computational Learning Theory, Second European Conference, EuroCOLT'95, Barcelona, Spain, pages 182–195. Springer-Verlag, March 1995. Lecture Notes in Artificial Intelligence 904.

    Google Scholar 

  8. R. Freivalds, M. Karpinski, and C. H. Smith. Co-learning of total recursive functions. In Proceedings of the Seventh Annual Conference on Computational Learning Theory, New Brunswick, New Jersey, pages 190–197. ACM Press, July 1994.

    Google Scholar 

  9. R. Freivalds and T. Zeugmann. Co-learning of recursive languages from positive data. Technical Report RIFIS-TR-CS-110, Kyushu University, 1995.

    Google Scholar 

  10. E. M. Gold. Language identification in the limit. Information and Control, 10:447–474, 1967.

    Article  Google Scholar 

  11. S. Jain. An infinite class of functions identifiable using minimal programs in all Kolmogorov numberings. International Journal of Foundations of Computer Science, 6(1):89–94, March 1995.

    Article  Google Scholar 

  12. R. Klette and R. Wiehagen. Research in the theory of inductive inference by GDR mathematicians — A survey. Information Sciences, 22:149–169, 1980.

    Google Scholar 

  13. S. Lange, R. Wiehagen, and T. Zeugmann. Learning by erasing. Technical Report RIFIS-TR-CS-122, Kyushu University, 1996.

    Google Scholar 

  14. D. Osherson, M. Stob, and S. Weinstein. Systems that Learn, An Introduction to Learning Theory for Cognitive and Computer Scientists. MIT Press, Cambridge, Mass., 1986.

    Google Scholar 

  15. H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967. Reprinted, MIT Press 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Setsuo Arikawa Arun K. Sharma

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jain, S., Kinber, E., Wiehagen, R. (1996). On learning and co-learning of minimal programs. In: Arikawa, S., Sharma, A.K. (eds) Algorithmic Learning Theory. ALT 1996. Lecture Notes in Computer Science, vol 1160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61863-5_50

Download citation

  • DOI: https://doi.org/10.1007/3-540-61863-5_50

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61863-8

  • Online ISBN: 978-3-540-70719-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics